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Chapter 3: Solutions and Thermodynamics of
Multicomponent Systems

Introduction
n the previous chapter, we introduced thermodynamic tools that allow us to predict the equi-
librium mineral assemblage under a given set of conditions.  For example, having specified
temperature, we were able to determine the pressure at which the assemblage anor-

thite+forsterite is in equilibrium with the assemblage diopside+spinel+enstatite.  In that reaction
the minerals had unique and invariant compositions.  In the Earth, things are not quite so simple:
these minerals are present as solid solutions*, with substitutions of Fe for Mg, Na for Ca, and Cr and
Fe3+ for Al, among others.  Indeed, most natural substances are solutions; that is, their compositions
vary.  Water, which is certainly the most interesting substance at the surface of the Earth and per-
haps the most important, inevitably has a variety of substances dissolved in it.  These dissolved sub-
stances are themselves often of primary geochemical interest.   More to the point, they affect the
chemical behavior of water.  For example, the freezing temperature of an aqueous NaCl solution is
lower than that of pure water.  You may have taken advantage of this phenomenon by spreading salt
to deice sidewalks and roads, or adding salt to ice to make ice cream.

In a similar way, the equilibrium temperature and pressure of the plagioclase+olivine ® clinopy-
roxene+spinel+orthopyroxene reaction depends on the composition of these minerals.  To deal with
this compositional dependence, we need to develop some additional thermodynamic tools, which is
the objective of this chapter.  This may at first seem burdensome: if it were not for the variable com-
position of substances, we would already know most of the thermodynamics we need.  However, as we
will see in Chapter 4, we can use this compositional dependence to advantage in reconstructing condi-
tions under which a mineral assemblage or a hydrothermal fluid formed.

A final ÒdifficultyÓ is that the valance state of many elements may vary.  Iron, for example, may
change from its Fe2+ state to Fe3+ when an igneous rock weathers.  The two forms of iron have very
different chemical properties; for example Fe2+ is considerably more soluble in water than is Fe3+.
Another example of this kind of reaction is photosynthesis, the process by which CO2 is converted to
organic carbon.  These kinds of reactions are called ÒoxidationÐreductionÓ, or ÒredoxÓ reactions.  The
energy your brain uses to process the information you are now reading comes from oxidation of organic
carbon Ñ carbon originally reduced by photosynthesis in plants.  To fully specify the state of a
system, we must specify its ÒredoxÓ state.  We treat redox reactions in the final section of this
chapter.

Though Chapter 4 will add a few more tools to our geochemical toolbox, and treat a number of ad-
vanced topics in thermodynamics, it is designed to be optional.  With completion of this chapter, you
will have a sufficient thermodynamic background to deal with a wide range of phenomena in the
Earth, and most of the topics in the remainder of this book.  

Phase Equilibria
 Some Definitions

Phase

Phases are real substances that are homogeneous, physically distinct, and (in principle) mechani-
cally separable.  For example, the phases in a rock are the minerals present.  Amorphous substances

                                                
*The naturally occuring minerals of varying composition are referred to as plagioclase rather than
anorthite, olivine rather than forsterite, clinopyroxene rather than diopside, and orthopyroxene
rather than enstatite.
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are also phases, so glass or opal would be phases.  The sugar that won't dissolve in your ice tea is a
distinct phase from the tea, but the dissolved sugar is not.  Phase  is not synonymous with compound.  
Phases need not be chemically distinct: a glass of ice water has two distinct phases: water and ice.
Many solid compounds can exist as more than one phase.  Nor need they be compositionally unique:
plagioclase, clinopyroxene, olivine, etc., are all phases even though their composition can vary.
Thus a fossil in which the aragonite (CaCO3) is partially retrograded into calcite (also CaCO3)
consists of 2 phases.  Systems, and reactions occurring within them, consisting of a single phase are
referred to as homogenous ; those systems consisting of multiple phases, and the reactions occurring
within them,  are referred to as heterogeneous.

Species

Species is somewhat more difficult to define than either phase or component.  A species is a chemi-
cal entity, generally an element or compound (which may or may not be ionized).  The term is most
useful in the context of gases and liquids.  A single liquid phase, such as an aqueous solution, may con-
tain a number of species.    For example, H2O, H2CO3, HCO 3

– , CO 3
2+ , H+, and OHÐ are all species

commonly present in natural waters.  The term species is generally reserved for an entity tha t
actually exists, such as a molecule, ion, or solid on a microscopic scale.  This is not necessarily the case
with components, as we shall see.  The term species is less useful for solids, although it is sometimes
applied to the pure end-members of solid solutions and to pure minerals.  

Component

In contrast to a species, a component need not be a real chemical entity, rather it is simply an alge-
braic term in a chemical reaction.  The minimum number of components* of a system is rigidly defined
as the minimum number of independently variable entities necessary to describe the composition o f
each and every phase of a system.  Unlike species and phases, components may be defined in any
convenient manner:  what the components of your system are and how many there are depend on your
interest and on the level of complexity you will be dealing with.  Consider our aragonite-calcite
fossil.  If the only reaction occurring in our system (the fossil) is the transformation of aragonite to
calcite, one component, CaCO3, is adequate to describe the composition of both phases.  If, however,
we are also interested the precipitation of calcium carbonate from water, we might have to consider
CaCO3 as consisting of 2 components: Ca2+ and CO 3

2 .
There is a rule to determine the minimum number of components in a system once you decide what

your interest in the system is; the hard part is often determining your interest.  The rule is:
c = n - r 3.1

where n is the number of species or phases, and r is the number of independent chemical reactions pos-
sible between these species.  Let's try it for our fossil.  n is 2 (calcite and aragonite), r is 1 (the trans-
formation reaction), so c =1; the aragoniteÐcalcite fossil has only one component.  Thus a system may
have only 1 component (here n =2 and r = 1), but several phases.   Now letÕs try the rule on the species
we listed above for water.  We have 6 species: H2O, H2CO3, HCO 3

– , CO 3
2+ , H+, and OHÐ.  We can

write 3 reactions relating them:
H+ + CO 3

2–® HCO 3
–

H+ + HCO 3
– ® H2CO3

H+ + OH– ® H2O
So equation 3.1 tells us we need 3 = 6 Ð 3 components to describe this system: CO

3
2+ , H+, and OHÐ.

In igneous and metamorphic petrology, components are often the major oxides (though we may often
chose to consider only a subset of these).  On the other hand, if we were concerned with the isotopic

                                                
*Caution: some books use the term number of components as synonomous with minimum number o f
components.
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equilibration of minerals with a hydrothermal fluid, 18O would be considered as a different
component than 16O.

Perhaps the most straightforward way of determining the number of components is a graphical ap-
proach.  If all phases can be represented on a one-dimensional diagram (that is, a straight line repre-
senting composition), we are dealing with a two component system.  For example, consider the hydra-
tion of Al2O3 (corundum) to form boehmite (AlO(OH)) or gibbsite Al(OH)3.  Such a system would con-
tain 4 phases (corundum, boehmite, gibbsite, water), but is nevertheless a two component system be-
cause all phases may be represented in one-dimension of composition space, as is shown in Figure 3.1.
Because there are two polymorphs of gibbsite, one of bohemite, and two other possible phases of wa-
ter, there are 9 phases possible phases in this two-component system.  Clearly a system may have
many more phases than components.

Similarly, if a system may be represented in 2 dimensions, it is a three component system.  Figure 3.2
is a ternary diagram illustrating the system Al2O3ÐH2OÐSiO2.  The graphical representation ap-
proach reaches it practical limit in a four component system because of the difficulty of representing

any more than 3 dimensions on paper.  A four
component system is a quaternary one, and
can be represented with a three-
dimensional quaternary diagram.

It is important to understand that a com-
ponent may or may not have chemical real-
ity.  For example in the exchange reaction:

NaAlSi3O8 + K+ = KAlSi3O8 + Na+

we could alternatively define the exchange
operator KNa-1 (where Na-1 is -1 mol of N a
ion) and write the equation as:

NaAlSi3O8 + KNa–1 = KAlSi3O8

Here we have 4 species and 1 reaction and
thus a minimum of 3 components.  You can see
that a component is merely an algebraic
term.

There is generally some freedom in choos-
ing components.  For example, in the ternary
(i.e., 3 component) system SiO2 Ð Mg2SiO4 Ð
MgCaSi2O6, we could choose our components
to be quartz, diopside, and forsterite, or we
could choose them to be SiO2, MgO, and
CaO.  Either way, we are dealing with a
ternary system (which contains MgSiO3 as
well as the three other phases).

Degrees of Freedom

The number of degrees of freedom in a sys-
tem is equal to the sum of the number of in-
dependent intensive variables (generally T
& P) and independent concentrations (or ac-

Al2O3 AlO(OH) Al(OH)3 H2O
Figure 3.1.  Graphical Representation of the System Al2O3-H2O.
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Figure 3.2  Phase diagram for the system Al2O3ÐH2OÐ
SiO2.  The lines are called joins because they join
phases.  In addition to the end-members, or compon-
ents, phases represented are g: gibbsite, by: bayerite, n:
norstrandite (all polymorphs of Al(OH)3), d: diaspore,
bo: bohemite (polymorphs of AlO(OH)), a: andelusite,
k: kyanite, s: sillimanite (all polymorphs of Al2SiO5),
ka : kaolinite, ha : halloysite, di: dickite, na: nacrite
(all polymorphs of Al2Si2O5(OH)4), and p :
pyrophyllite (Al2Si4O10(OH)2).  There are also 6
polymorphs of quartz (coesite, stishovite, tridymite,
cristobalite, α-quartz, and β-quartz).
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tivities or chemical potentials) of components in phases that must be fixed to define uniquely the
state of the system.  A system that has no degrees of freedom (i.e., is uniquely fixed) is said to be in-
variant, one that has one degree of freedom is univariant, etc.  Thus in an univariant system, for
example, we need specify only the value of one variable, for example, temperature or the
concentration of one component in one phase, and the value of pressure and all other concentrations are
then fixed, i.e., they can be calculated (assuming the system is at equilibrium).

The Gibbs Phase Rule

The Gibbsà Phase Rule is a rule for determining the degrees of freedom, or variance, of a system a t
equilibrium.  The rule is:

ƒ   =   c   -   φ   +   2  3.2

where Ä is the degrees of freedom, c is the number of components, and φ is the number of phases.  The
mathematical analogy is that the degrees of freedom are equal to the number of variables less the
number of equations relating those variables.   For example, in the phase diagram illustrating the
critical behavior of water (Figure 2.3), we had 1 component and 2 phases when water vapor and wa-
ter liquid were in equilibrium.  Ä was therefore 1.  If we fixed 1 variable, say pressure, all other
variables, such as T and the molar volumes, would be also fixed for that pressure.  Three phases coex-
ist at the triple point of water, so the system is said to be invariant, and T and P are uniquely fixed:
there is only one temperature and one pressure at which the three phases of water can coexist (273.15
K and 0.006 bar).  If only one phase is present, for example just liquid water, then we need to specify 2
variables to describe completely the system.  It doesnÕt matter which two we pick.  We could specify
molar volume and temperature and from that we could deduce pressure.  Alternatively, we could spec-
ify pressure and temperature.  There is only 1 possible value for the molar volume if temperature and
pressure are fixed.  It is important to remember this applies to intensive parameters.  To know volume,
an extensive parameter, we would have to fix one additional extensive variable (such as mass or
number of moles).  And again, we emphasize that all this applies only to systems at equilibrium.

Now consider the hydration of corundum to form gibbsite.  There are 3 phases, but there need be only
two components.  If these 3 phases (water, corundum, gibbsite) are at equilibrium, we have only 1 de-
gree of freedom, i.e., if we know the temperature at which the reaction is occurring, the pressure is
also fixed.

Rearranging equation 3.2, we  also can determine the maximum number of phases that can coexist a t
equilibrium in any system.  The degrees of freedom cannot be less than zero, so for an invariant, one
component system, a maximum of three phases can coexist at equilibrium.  In a univariant one-
component system, only 2 phases can coexist.  Thus sillimanite and kyanite can coexist over a range of
temperatures, as can kyanite and andalusite.  But the three phases of Al2SiO5 coexist only at one
unique temperature and pressure.

Let's consider the example of the three component system Al2O3ÐH2OÐSiO2 in Figure 3.2.  Although
many phases are possible in this system, for any given composition of the system only three phases
can coexist at equilibrium over a range of temperature and pressure.  Four phases, e.g., a, k, s and q, can
coexist only at points of either fixed pressure or fixed temperature.  Such points are called univariant
points.  Five phases can coexist at invariant points at which both temperature and pressure are
uniquely fixed.  Turning this around, if we found a metamorphic rock whose composition fell within

                                                
à J. Williard Gibbs (1839-1903) is viewed by many as the father of thermodynamics.  He received the
first doctorate in engineering granted in the U. S., from Yale in 1858.  He was Professor of Mathematical
Physics at Yale from 1871 until his death.  He also helped to found statistical mechanics.  The
importance of his work was not widely recognized by his American colleagues, though it was in Europe,
until well after his death.
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the Al2O3ÐH2OÐSiO2 system, and if the rock contained 5 phases, it would be possible to determine
uniquely the temperature and pressure at which the rock equilibrated.
 Figure 3.3 shows the psuedo-ternary system Forsterite (Fo; Mg2SiO4)ÑAnorthite (An;
CaAl2Si2O8)ÑDiopside (Di; CaMgSi2O6).  It is not a true ternary system because a phase (spinel:
MgAlO4) occurs within the system that cannot be described in terms of the components Fo, An and Di.
The system is of great interest because it contains the Mg and Ca end-members of the most common ba-
saltic minerals; it is a synthetic basaltic system of particular use to experimentalists.  Thus despite
its not being a true ternary system we will use it illustrate how the phase rule applies to igneous
petrology.  At temperatures above the liquidus of the system, only one phase is present, namely liquid
which can have variable concentrations of the three components.  Applying the phase rule, with 3
components and 1 phase, we have 4 degrees of freedom.  In other words, to describe the system
completely, we need to specify temperature and pressure as well as the concentration of two of the
three components in the liquid to describe the system completely.  Once the temperature reaches the
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Figure 3.3.  Phase diagram for the system Mg2SiO4ÐCaAl2Si2O8ÐCaMgSi2O6

(forsterite-anorthite-diopside).  Lines labelled 1300, 1400, etc. are isotherms (¡ C) on
the liquidus surface (imagining temperature on an axis coming out of the paper).
Cotectic lines divide fields of the first phase to crystallize, which are labelled
with the crystallizing phase + L (liquid).  Two phases are in equilibrium with the
liquid along such lines.  The system contains two univariant reaction points labelled
D and E.  They are also called phase elimination points because one phase present
must be eliminated before temperature changes further.  Because E is a eutectic, i.e.,
the lowest melting point of the system, D is called a peritectic.  Because the composi-
tion of spinel cannot be represented on this diagram, this is not a true ternary system.
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liquidus a second phase appears, so we have 2 phases.  Suppose that second phase is forsterite.  The
phase rule tells us that we have 3 degrees of freedom.  If we specify pressure as 0.1 MPa (this phase
diagram is drawn for 1 bar or 0.1 MPa), we need only specify two other variables to describe the
system completely.  Suppose we specify temperature as 1400¡C.  The composition of the liquid must
then lie somewhere on the 1400¡ isotherm.  By specifying the concentration of just one component in
the melt, the concentrations of the remaining 2 components are also fixed.  On a cotectic line in this
phase diagram, there are three phases present: liquid and two solids.  Along such lines the system is
divariant: we need only specify two parameters to describe the system completely.  For example, i f
the phase assemblage is liquid+An+Fo and we again specify pressure as 0.1 MPa, we need only
specify one other variable to describe the system completely: for example by specifying the
temperature as 1300¡C, the composition of the liquid is fixed at An56Fo18 Di26.  At the point labelled
ÔEÕ 4 phases coexist, An, Di, Fo, and liquid, so the system is univariant.  We need only specify one pa-
rameter, pressure, to describe the system completely.  By specifiying the pressure as 0.1 MPa, then
temperature is fixed at 1312¡C and the composition of the liquid is fixed at An44 Fo7 Di49.

LetÕs consider this last example of a univariant system a little further.  If pressure is fixed and 4
phases coexist, then temperature and the concentration of each component in the liquid can deter-
mined.  However, the composition of the system as a whole is not determined because we can say
nothing about the proportions of the phases present.  The composition of the whole system could l i e
anywhere within the diagram (but not along the edges or at the apecies) and the same 4 phases
would be present at this temperature and pressure.  Concentrations of components in the system as a
whole, i.e., the bulk composition of the system, are not among the variable included in Ä (degrees of
freedom), and not among the variables we need to define to describe the Òstate of the systemÓ.

The Clapeyron Equation

A common problem in geochemistry is to know how a phase boundary varies in P-T space, e.g., how a
melting temperature will vary with pressure.  At a phase boundary, two phases must be in equilib-
rium, i.e., ÆG must be 0 for the reaction Phase 1 ® Phase 2.  The phase boundary therefore describes
the condition:

d( Gr) = VrdP - SrdT = 0.
 Thus the slope of a phase boundary on a temperature-pressure diagram is:

 
dT
dP

=
∆Vr

∆Sr

3.3

where Vr and Sr are the volume and entropy changes associated with the reaction.  Equation 3.3 is
known as the Clausius-Clapeyron Equation, or simply the Clapeyron Equation.  Because Vr and Sr
are functions of temperature and pressure, this, of course, is only an instantaneous slope.  For many re-
actions, however, particularly those involving only solids, the temperature and pressure dependen-
cies of Vr and Sr will be small and the Clapeyron slope will be relatively constant over a large T
and P range.  

Because ÆS = ÆH/T, the Clapeyron equation may be equivalently written as:
 dT

dP
=

T ∆Vr

∆Hr

3.4

Slopes of phase boundaries in P-T space are generally positive, implying that the phases with the
largest volumes also generally have the largest entropies (for reasons that become clear from a statis-
tical mechanical treatment).  This is particularly true of solid-liquid phase boundaries, although
there is one very important exception: water.  How do we determine the pressure and temperature de-
pendence of Vr and why is Vr relatively T and P independent in solids?
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Example 3.1: The Graphite-Diamond
Transition

At 25¡C the graphite-diamond transi tion
occurs at 1600 MPa (megapascals, 1 MPa =10 b).
Using the standard state (298 K, 0.1 MPa) data
below, predict the pressure at which  the trans-
formation occurs when temperature is 1000¡C.

Answer: We can use the Clapeyron equation
to determine the slope of the phase boundary.
Then, assuming that ÆS and ÆV are independent
of temperature, we can extraplate th is slope to
1000¡ C to find the pressure of the phase transi -
tion at that temperature.

First, we calculate the volumes of graphite
and diamond at 1600 MPa as:

V = V°(1 – β P) 3.5
where ÆP is the di fference between the pressure
of interest (1600 MPa in th is case) and the refer-
ence pressure (0.1 MPa).  Doing so, we find the
molar volumes to be 5.037 for graphite and 3.405
for diamond, so ÆVr is Ð1.6325 cc/mol .  The next
step wil l  be to calculate ÆS at 1600 MPa.  The
pressure dependence of entropy is given by equa-
tion 2.143: ¶S/¶P)T = ÐαV.  Thus to determine
the effect of pressure we integrate:  

SP = S°+
∂S
∂P

T

dP
Pref

P1

= S°+ –αV dP
Pref

P1

3.6

(We use Sp to indicate the entropy at the pres-
sure of interest and S¡ the entropy at the refer-
ence pressure.)  We need to express V as a func-
tion of pressure, so we substi tute 3.5 into 3.6:

  
SP = S° + –αV°(1 – βP)dP

Pref

P1

= S° – αV° ∆P –
β
2(P1

2 – Pref
2 )

3.7

The reference pressure, Pref, i s negl igible com-
pared to P1 (0.1 MPa vs 1600 PMa), so that th is
simpli fies to:

  
SP = S° – αV° ∆P –

β
2P1

2

For graphite, Sp is 5.66 J/K-mol , for diamond, i t
is 2.34 J/K-mol , so ÆSr at 1600 MPa is -3.32 J-K-1-
mol -1.

The Clapeyron slope is therefore:
S
V  = 

–3.322
–1.63   = 2.035 JK-1cm-3

One distinct advantage of the SI units is that
cm3 = J/MPa, so the above units are equivalent to
K/MPa.  From th is, the pressure of the phase
change at 1000¡ C can be calculated as:

P1000 = P298 + T × 
S
V  

 =1600 + 975 × 2.035 = 3584 MPa
The Clapeyron slope we calculated (sol id

l ine) is compared with  the experimental ly de-
termined phase boundary in Figure 3.4.  Our cal -
culated phase boundary is l inear whereas the
experimental  one is not.  The curved nature of
the observed phase boundary indicates ÆV and
ÆS are pressure and temperature dependent.
This is indeed the case, particularly for graph-
i te.  A more accurate estimate of the volume
change requires β be expressed as a function of
pressure.
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Figure 3.4.  Comparison of the  graphite-dia-
mond phase boundary calculated from thermo-
dynamic data and the Clapeyron slope (sol id
l ine) with  the experimental ly observed phase
boundary (dashed l ine).

Graphite Diamond
α  (K–1) 1.05 ×10-05 7.50 ×10-06

β (MPa -1) 3.08 ×10-05 2.27 ×10-06

S¡  (J/K-mol) 5.74 2.38
V (cm3/mol) 5.2982 3.417
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Solutions
Solutions are defined as homogeneous phases produced by dissolving one or more substances in an-

other substance.  In geochemistry we are often confronted by solutions: as gases, liquids, and solids.
Free energy depends not only on T and P, but also on composition.  In thermodynamics it is generally
most convenient to express compositions in terms of mole fractions, Xi, the number of moles of i divided
by the total moles in the substance (moles are weight divided by atomic or molecular weight).  The
sum of all the Xi must, of course, total to 1.

Solutions are distinct from purely mechanical mixtures.  For example, salad dressing (oil and vine-
gar) is not a solution.  Similarly, we can grind anorthite (CaAl2Si2O8) and albite (NaAlSi3O8) crys-
tals into a fine powder and mixture them, but the result is not a plagioclase solid solution.  The Gibbs
Free Energy of mechanical mixtures is simply the sum of the free energy of the components.  If, how-
ever, we heated the anorthite-albite mixture to a sufficiently high temperature that the kinetic bar-
riers were overcome, there would be a reordering of atoms and the creation of a true solution.  Because
this reordering is a spontaneous chemical reaction, there must be a decrease in the Gibbs Free Energy
associated with it.  This solution would be stable at 1 atm and 25¡C.  Thus we can conclude that the so-
lution has a lower Gibbs Free Energy than the mechanical mixture.  On the other hand, vinegar will
never dissolve in oil at 1 atm and 25¡C because the Gibbs Free Energy of that solution is greater than
that of the mechanical mixture.

Raoult's Law

Working with solutions of ethylene bromide and propylene bromide, Raoult¦ noticed that the va-
por pressures of the components in a solution were proportional to the mole fractions of those compo-
nents:

 
Pi = XiPi

o 3.8

where Pi is the vapor pressure of component i above the solution, Xi is the mole fraction of i in solu-
tion, and P°i  is the vapor pressure of pure i under standard conditions.  Assuming the partial pressures
are additive and the sum of all the partial pressures is equal to the total gas pressure (ΣPi = Ptotal):

P i  =   X iP t o t a l  3.9

Thus partial pressures are proportional to their mole fractions.  This is the definition of the partial
pressure of the ith gas in a mixture.  

Raoult's Law holds only for ideal solutions, i.e., substances where there are no intermolecular
forces.  It also holds to a good approximation where the forces between like molecules are the same as
between different molecules.  The two components Raoult was working with were very similar chemi-
cally, so that this condition held and the solution was nearly ideal.  As you might guess, not all solu-
tions are ideal.  Fig. 3.5 shows the variations of partial pressures above a mixture of water and diox-
ane.  Significant deviations from Raoult's Law are the rule except where Xi approaches 1.

Henry's Law

Another useful approximation occurs when Xi approaches 0.   In this case, the partial pressures are
not equal to the mole fraction times the vapor pressure of the pure substance, but they do vary lin-
early with Xi.  This behavior follows HenryÕs Law£, which is:

 
Pi = hXi for Xi << 1 3.10

                                                
¦ Francois Marie Raoult (1830-1901), French chemist.
£ named for English chemist William Henry (1775-1836), who formulated it.
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where h is known as the Henry's Law constant.

Chemical Potential

Partial Molar Quantities

Free energy and other thermodynamic properties are dependent on composition.  We need a way of
expressing this dependence.  For any extensive property of the system, such as volume, entropy, en-
ergy, or free energy, we can define a partial molar value, which expresses how that property will
depend on changes in amount of one component.  For example, we can define partial molar volume of
component i in phase φ as:

  
vi

φ =
∂V

∂ni T,P,nj, j≠i

3.11    such that V= niv∑
i

(we will use small letters to denote partial molar quantities; the superscript refers to the phase and
the subscript refers to the component).  The English interpretation of equation 3.11 is that the par t i a l
molar volume of component i in phase φ tells us how the volume of phase φ will vary with an in-
finitesimal addition of component i, if all other variables are held constant.  For example, the par-
tial molar volume of Na in an aqueous solution solution such as seawater would tell us how the vol-
ume of that solution would change for an infinitesimal addition of Na.  In this case i would refer to
the Na component and φ would refer to the aqueous solution phase.  In Table 2.2, we see that the mo-
lar volumes of the albite and anorthite end-members of the plagioclase solid solution are different.
We could define v Ab

Pl  as the partial molar volume of albite in plagioclase, which would tell us how
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Figure 3.5.  Vapor pressure of water and dioxane in a water-dioxane
mixture showing deviations from ideal mixing.  Shaded areas are
areas where Raoult's Law (dashed lines).  Henry's Law slopes are
shown as dot-dashed lines.  After Nordstrom and Munoz (1986).
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the volume of plagioclase would vary for an infinitesimal addition of albite.  (In this example we
have chosen our component as albite rather than Na.  While we could have chosen Na, the choice of
albite simplifies matters because the replacement of Na with Ca is accompanied by the replacement
of Si by Al.)

Another example might be a solution of water and ethanol.  The variation of the partial molar
volumes of water and ethanol in a binary solution is illustrated in Figure 3.6.  This system illustrates
very clearly why the qualification Òfor an infinitesimal additionÓ is always added: the value of a
partial molar quantity of a component may vary with the amount of that component present.

Equation 3.11 can be generalized to all partial molar quantities and also expresses an important
property of partial molar quantities: an extensive variable of a system or phase is the sum of itÕs par -
tial molar quantities for each component in the system.  In our example above, this means that the
volume of plagioclase is the sum of the partial molar volume of the albite and anorthite components.

Generally, we find it more convenient to convert extensive properties to intensive properties by di-
viding by the total number of moles in the system, Σn.  Dividing both sides of equation 3.11 by Σn we
have:

  V= Xivi∑
i

3.12

This equation says that the molar volume of a
substance is the sum of the partial molar volumes
of its components times their mole fractions.  For
a pure phase, the partial molar volume equals
the molar volume since X=1.

Definition of Chemical Potential and
Relationship to Gibbs Free Energy

 We define µ as the chemical potential, which
is simply the partial molar Gibbs Free Energy:

  
µµi ≡≡ ∂∂G

∂∂ni
P T n

3.13

The chemical potential thus tells us how the
Gibbs Free Energy will vary with the number of
moles of component i, ni, holding temperature,
pressure and the number of moles of all other
components constant.  We said that the Gibbs Free
Energy of a system is a measure of the capacity of
the system to do chemical work.  Thus the
chemical potential of component i is the amount
by which this capacity to do chemical work is changed for an infinitesimal addition of component i
at constant temperature and pressure.  In a NiCd battery (common rechargeable batteries) for
example, the chemical potential of Ni in the battery (our system) is a measure of the capacity of the
battery to provide electrical energy per mole of additional Ni for an infinitesimal addition.

The total Gibbs Free Energy of a system will depend composition as well as on temperature and
pressure.  The equations we introduced for Gibbs Free Energy in Chapter 2 fully describe the Gibbs Free
Energy only for single components systems or systems containing only pure phases.  The Gibbs Free
Energy change of a phase of  variable composition is fully expressed as:

  dG = VdP - SdT + µidni∑
i

3.14
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Figure 3.6.  Variation of the partial molar vol-
umes of water and ethanol as a function of the
mole fraction of ethanol in a binary solution.
This figure also illustrates the behavior of a very
non-ideal solution.
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Properties of the Chemical Potential

We now want to consider two important properties of the chemical potential.  To illustrate these
properties, consider a simple two-phase system in which an infinitesimal amount of component i is
transferred from phase β to phase α, under conditions where T, P, and the amount of other components
is held constant in each phase.  One example of such a reaction would be the transfer of Pb from a hy-
drothermal solution to a sulfide mineral phase.  The chemical potential expresses the change in
Gibbs Free Energy under these conditions:

  dG = dGα + dGβ = µi
αdni

α + µi
βdni

β 3.15

since we are holding everything else constant, what is gained by α must be lost by β, so Ðdnα
i   = dnβ

i  
and:  

  dG = µi
α - µi

β dni 3.16

At equilibrium,  dG = 0, and therefore µα
i   = µβ

i  3.17

Equation 3.17 reflects a very general and very important relationship, namely:

 In a system at equilibrium, the chemical potential of every component in a phase
is equal to the chemical potential of that component in every other phase in the

system in which that component is present.

Equilibrium is the state toward which systems will naturally transform.  The Gibbs Free Energy is
the chemical energy available to fuel these transformations. We can regard differences in chemical
potentials as the forces driving transfer of components between phases .  In this sense, the chemical
potential is similar to other forms of potential energy, such as gravitational or electromagnetic.
Physical systems spontaneously transform so as to minimize potential energy.  Thus for example, wa-
ter on the surface of the Earth will move to a point where itÕs gravitational potential energy is mini-
mized, i.e., downhill.  And just as gravitational potential energy drives this motion, the chemical
potential drives chemical reactions, and just as water will come to rest when gravitational energy is
minimized, chemical reactions will cease when chemical potential is minimized.  So in our example
above, the spontaneous transfer of Pb between a hydrothermal solution and a sulfide phase will occur
until the chemical potentials of Pb in the solution and in the sulfide are equal.  At this point,  there is
no further energy available to drive the transfer.

We defined the chemical potential in terms of the Gibbs Free Energy.  However, in his original
work, Gibbs based the chemical potential on the internal energy of the system.  As it turns out, how-
ever, the quantities are the same:

  µi =
∂G
∂ni P,T,nj, j≠i

=
∂U
∂ni S,V,nj, j≠i

3.18

 It can be further shown (but we wonÕt) that:

µi = 
G
ni P,T,nj, j≠i

 = 
U
ni S,V,nj, j≠i

= 
H
ni S,P,nj, j≠i

= 
A
ni T,V,nj, j≠i

The Gibbs-Duhem Relation

Since µ is the partial molar Gibbs Free Energy, the Gibbs Free Energy of a system is the sum of the
chemical potentials of each component:

  
G = ni∑

i

∂G
∂ni

P,T,nj, j≠i

= niµi∑
i

3.19

The differential form of this equation (which we get simply by applying the chain rule) is:  
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dG n d dni i i
ii

= µ + µ∑∑ 3.20

 Equating this with equation 3.14, we obtain:
  nidµi∑

i

+ µidni∑
i

= VdP - SdT + µidn∑
i

3.21

Subtracting ∑
i

Êµidni  from each side and rearranging, we obtain the Gibbs-Duhem Relation:
 VdP - SdT - nidµi∑

i
= 0 3.22

The Gibbs-Duhem Equation describes the relationship between simultaneous changes in pressure,
temperature and composition in a single phase system.  In a closed system at equilibrium, net changes
in chemical potential will occur only as a result of changes in temperature or pressure.  At constant
temperature and pressure, there can be no net change in chemical potential at equilibrium:

  nidµi∑
i

= 0 3.23

This equation further tells us that the chemical potentials do not vary independently, but change in a
related way.  In a closed system, only one chemical potential can vary independently.  For example,
consider a two component system.  Then we have n1dµ1 + n2dµ2 = 0 and dµ2 = – (n1/n2)dµ1.  If a given
variation in composition produces a change in µ1 then there is a concomitant change in  µ2.

For multi-phase systems, we can write a version of the Gibbs-Duhem relation for each phase in the
system.  For such systems, the Gibbs-Duhem relation allows us to reduce the number of independently
variable components in each phase by one.  We will return to this point later in the chapter.

We can now state an additional property of chemical potential:

 In spontaneous processes, components or species are distributed between phases
so as to minimize the chemical potential of all components.

This allows us to make one more characterization of equilibrium: equilibrium is point where t h e
chemical potential of all components is  minimized.

Derivation of the Phase Rule

Another significant aspect of the Gibbs-Duhem Equation is that the phase rule can be derived
from it.  We begin by recalling that the variance of a system (the number of variables that must be
fixed or independently determined to determine the rest) is equal to the number of variables less the
number of equations relating them.  In a multicomponent single phase system, consisting of c com-
ponents, there are c +2 unknowns required to describe the equilibrium state of the system: T, P, µ1, µ2,
...µc.  But in a system of φ phases at equilibrium, we can write φ versions of equation 3.23, which re-
duces the independent variables by φ.  Thus the number of independent variables that must be speci-
fied to describe a system of c components and φ phases is:

f = c + 2 -φ
which is the Gibbs phase rule.

Specification of Ä variables will completely describe the system, at least with the qualification
that in thermodynamics we are normally uninterested in the size of the system, that is, in extensive
properties such as mass, volume, etc. (though we are interested in their intensive equivalents) and
outside forces or fields such as gravity, electric or magnetic fields, etc.  Nevertheless, the size of the
system is described as well, provided only that one of the Ä variables is extensive.
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Ideal Solutions
Having placed another tool, the chemical potential, in our thermodynamic toolbox, we are ready

to continue our consideration of solutions.  We will begin with ideal solutions, which, like ideal
gases, are fictions that avoid some of the complications of real substances.  For an ideal solution, we
make an assumption similar to one of those made for an ideal gas, namely that there were no forces
between molecules.  In the case of ideal solutions, which may be gases, liquids, or solids, we can relax
this assumption somewhat and require only that the interactions between different kinds of molecules
in an ideal solution are the same as those between the same kinds of molecules.

How does chemical potential vary in an ideal solution?  Consider the vapor pressure of a gas.  The
derivative of G with respect to pressure at constant temperature is volume:





G

P  T = V

Written in terms of partial molar quantities: 




µ

P   = v

If the gas is ideal, then:
 ∂µ

∂P T, ideal

=
RT

P
3.24

and if we integrate from P¡ to P we obtain:
 µP – µP° = RT ln

P
P°

3.25

where µP¡ is the chemical potential of the pure gas at the reference (standard state) pressure P¡.  This
is the standard-state chemical potential and is written as µ¡.  If we let P¡ be the vapor pressure of
pure i and P be the vapor pressure of i in an ideal solution, then we may use Raoult's Law (Equation
3.8) and substitute X for P/P¡ to obtain the relationship between the chemical potential of the ith gas
and its mole fraction in an ideal solution (it makes sense that an ideal gas should form an ideal solu-
tion; after all it is the intermolecular forces that cause non-ideal behavior and these don't exist in an
ideal gas):

 
µi, ideal = µi

0 + RT ln Xi 3.26

We will be able to generalize a form of this equation to non-ideal cases a bit later.  Let's first con-
sider some other properties of ideal mixtures.  For real solutions, any extensive thermodynamic prop-
erty such as volume can be considered to be the sum of the volume of the components plus a volume
change due to mixing:

 V = XiVi∑
i

+∆Vmixing
3.27

The first term on the right reflects the volume resulting from mechanical mixing of the various com-
ponents.  The second term reflects volume changes associated with solution.  For example, if we mixed
100 ml of ethanol and 100 ml of water (Figure 3.6), the volume of the resulting solution would be 193
ml.  Here, the value of the first term on the right would be 200 ml, the value of the second term would
be -7 ml.  We can write similar equations for enthalpy, etc.  But the volume change and enthalpy
change due to mixing are both 0 in the ideal case.  This is true because both volume and enthalpy
changes of mixing arise from intermolecular forces, and, by definition, such intermolecular forces are
absent in the ideal case.  Thus:

Videal mixing = 0

therefore:   Videal = Xivi∑
i

= XiVi∑
i

and Hideal mixing = 0
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and therefore:   Hideal = Xihi∑
i

= XiHi∑
i

This, however, is not true of entropy.  You can imagine why: if we mix two substances on an atomic
level, the number of possible arrangements of our system increases even if they are ideal substances.
The entropy of ideal mixing is (compare equation 2.148):

  ∆Sideal mixing = -R Xiln Xi∑
i

3.28

  Sideal solution = XiSi∑
i

-R Xiln Xi∑ 3.29

Because ÆGmixing = ÆHmixing Ð TÆSmixing and ÆHmixing = 0,  it follows that:

  ∆Gideal mixing = RT Xiln Xi∑
i

3.30

We stated above that the total expression for an extensive property of a solution is the sum of the
partial molar properties of the pure phases (times the mole fractions) plus the mixing term.  The par-
tial molar Gibbs Free Energy is the chemical potential, so the full expression for the Gibbs Free
Energy of an ideal solution is:

  Gideal solution = Xiµi
o∑

i

+ RT Xiln Xi∑
i

3.31

Rearranging terms, we can re-express equation 3.31 as:
  Gideal solution = Xi µi

o + RTln Xi∑
i

3.32

The term in parentheses is simply the chemical potential of component i, µi, as expressed in equation
3.26.  Substituting equation 3.26 into 3.32, we have

  Gideal solution = Xiµi∑
i

3.33

Note that µi is always less than or equal to µ i
o because the term RTln Xi is always negative (because

the log of a fraction is always negative).
Let's consider ideal mixing in the simplest case, namely binary mixing.  For a two component

(binary) system, X1 = (1 Ð X2), so we can write equation 3.30 for the binary case as:
 ∆Gideal mixing = RT (1 – X2)ln(1 – X2) + X2lnX2 3.34

Since X2 is less than 1, ÆG is negative and becomes increasingly negative with temperature, as illus-
trated in Figure 3.7.  The curve is symmetrical with respect to X; i.e., the minimum occurs at X = 0.5.

Now letÕs see how we can recover information on µi from plots such as Figure 3.7, which we will
call G-barÑX plots.  Substituting X1 = (1 Ð X2) into equation 3.33, it becomes:

 Gideal solution = µ1(1 - X2) + µ2X2 = µ1 + (µ2- µ1)X2 3.35

This is the equation of a straight line on such a plot with slope of (µ2 Ð µ1) and intercept µ1. This line
is illustrated in Figure 3.8.  The curved line is described by equation 3.31.  The dashed line is given by
equation 3.35.  Both equation 3.31 and 3.35 give the same value of GÊ

Ñ
  for a given value of X2, such as

X«2.  Thus the straight line and the curved one in Figure 3.8 much touch at X«2.   In fact, the straight
line is the tangent to the curved one at X«2.  The intercept of the tangent at X2 = 0 is µ1 and the inter-
cept at X2 = 1 is µ2.  The point is, on a plot of molar free energy vs. mole fraction (a G-X diagram), w e
can determine the chemical potential of component i in a two component system by extrapolating a
tangent of the free energy curve to Xi = 1.  We see that in Figure 3.8, as X1 approaches 1 (X2 approaches
0), the intercept of the tangent approaches µ 1

o , i.e., µ1 approaches µ 1
o .  Looking at equation 3.26, this



W .  M .  W h i t e G e o c h e m i s t r y 

Chapter 3: Solutions

84 September 27, 1997

is exactly what we expect.  Figure 3.8 illustrates the case of an ideal solution, but the intercept
method applies to non-ideal solutions as well.

Finally, note that the solid line, the line connecting the µ¡Õs is the Gibbs Free Energy of a mechani-
cal mixture of components 1 and 2, which we may express as:

  Gmixture = Xiµi
o∑

i

3.36

You should satisfy yourself that the
ÆGmixing is the difference between this
line and the free energy curve:

 Gideal mix. = Gideal sol. – Gmixture 3.37

Real solutions
We now turn our attention to real so-

lutions, which are somewhat more
complex than ideal ones, as you might
imagine.  We will need to introduce a
few new tools to help us deal with
these complexities.

Chemical Potential in Real
Solutions

LetÕs consider the behavior of a real
solution in view of the two solution

models we have already introduced:
RaoultÕs Law and HenryÕs Law.
Figure 3.9 illustrates the variation
of chemical potential as a function of
composition in a hypothetical real
solution.  We can identify 3 regions
where the behavior of the chemical
potential is distinct:

1.) The first is where the mole
fraction of component Xi is close to 1
and Raoult's Law holds.  In this
case, the amount of solute dissolves
in i is trivially small, so molecular
interactions involving solute mole-
cules do not significantly affect the
thermodynamic properties of the so-
lution, and the behavior of µi is close
to that in an ideal solution:

 µi = µi
0 + RT ln Xi

(3.26)

2.) At the opposite end is the case
where Xi is very small.  Here inter-
actions between two component i
molecules are extremely rare, and
the behavior of µi is essentially con-
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Figure 3.7.  Free energy of mixing as a function of
temperature in the ideal case.
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Figure 3.8.  Molar free energy in an ideal mixture and
graphical illustration of equation 3.31.  After Nordstrom &
Munoz, 1986.
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trolled by interactions between i and those of
the solvent.  While the behavior of µi is not
ideal, it is nonetheless a linear function of ln
Xi.  This is the region where HenryÕs Law
holds.  The compositional dependence of the
chemical potential in this region can be
expressed as:

 µi = µi
0 + RT ln hiXi

3.38

where h  is the HenryÕs Law constant defined
in equation 3.10.  This equation can be rewrit-
ten as:

 µi = µi
0+ RTlnXi+ RTlnhi 3.39

By definition, h is independent of composition
at constant T and P and can be regarded as add-
ing a fixed amount to the standard state
chemical potential (a fixed amount to the in-
tercept in Fig. 3.9).  By independent of compo-
sition, we mean it is independent of Xi, the
mole fraction of the component of interest.  h
will, of course depend on the nature of the so-
lution.  For example, if Na is our component of
interest, hNa will not be the same for an elec-
trolyte solution as for a silicate melt.  We can
define a new term, µ*, as:

  µi
* ≡ µi

0 + RT ln h i 3.40
Substituting 3.40 into 3.39 we obtain:

 µi = µi
* + RT ln Xi

3.41

When plotted against ln Xi, the chemical potential of i in the range of very dilute solutions is given
by a straight line with slope RT and intercept µ* (the intercept is at Xi = 1 and hence ln Xi = 0 and µi =
µ*).  Thus  µ* can be obtained by extrapolating the Henry's Law slope to X = 1.  We can think of µ* a s
the chemical potential in the hypothetical standard state of Henry's Law behavior at X = 1.  

3.) The third region of the plot is that region of real solution behavior between the regions where
Henry's Law and Raoult's Law apply.   In this region, µ is not a linear function of ln X.  We will intro-
duce a new parameter, activity, to deal with this region.

Fugacities

The tools we have introduced to deal with ideal solutions and infinitely dilute ones are based on
observations of the gaseous state: RaoultÕs Law and HenryÕs Law.  We will continue to make reference
to gases in dealing with real solutions that follow neither law.  While this approach has a largely
historical basis, it is nevertheless a consistent one.  So following this pattern, we will first introduce
the concept of fugacity, and derive from it a more general parameter, activity.

In the range of intermediate concentrations, the partial pressure of the vapor of component i above
a solution is generally not linearly related to the mole fraction of component i in solution. Thus chemi-
cal potential of i cannot be determined from equations such as 3.26, which we derived on the assump-
tion that the partial pressure was proportional to the mole fraction.  To deal with this situation,
chemists invented a fictitious partial pressure, fugacity.  Fugacity may be thought of as the Ôescaping
tendencyÕ of a real gas from a solution.  It was defined to have the same relationship to chemical po-
tential as the partial pressure of an ideal gas:

µ i

ln X

µ°i

µ*i

Raoult's
Law

Henry's
Law

Real
Solutions

0 -∞

µ
i  = µ

i  + RT ln X
i

*

µ
i  = µ

i  + RT ln X
i

°

Figure 3.9.  Schematic plot of the chemical potential
of component i in solution as a function of ln Xi.  Here
µ¡ is the chemical potential of pure i at the pressure
and temperature of the diagram.  After Nordstrom
and Munoz (1986).
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µi = µi

o + RT ln ƒi

ƒi
o 3.42

where Ä¡ is the standard-state fugacity,
which is analogous to standard-state
partial pressure.  We are free to choose the
standard state, but the standard state for Ä¡
and µ¡ must be the same.  Ä¡ is analogous to
the standard state partial pressure, P¡, of
an ideal gas.  If we chose our standard state
to be the pure substance, then Ä¡ is identical
to P¡, but we may wish to choose some other
standard state where this will not be the
case.  Since the behavior of real gases
approaches ideal at low pressures, the
fugacity will approach the partial
pressure under these circumstances.  Thus
the second part of the definition of fugacity
is:

  lim
P→ 0

ƒi

Pi
= 1 3.43

For an ideal gas, fugacity is identical to partial pressure.  Since, as we stated above, fugacity bears
the same relationship to chemical potential (and other state functions) of a non-ideal substance as
pressure of a non-ideal gas, we substitute fugacity for pressure in thermodynamic equations.

The relationship between pressure and fugacity can be expressed as:

ƒ = φP 3.44
where φ is the fugacity coefficient, which will be a function of temperature and pressure differ for
each real gas.   The fugacity coefficient expresses the difference in the pressure between a real gas and
an ideal gas under comparable conditions.  Kerrich and Jacobs (1981) fitted the Redlich-Kwong equa-
tion (equation 2.20) to observations on the volume, pressure and volume of H2O and CO2 to obtain val-
ues for the coefficients a and b in equation 2.20.  From these, they obtained fugacity coefficients for
these gases at a series of temperatures and pressures.  These are given in Table 3.1.

Activities and Activity Coefficients

 Fugacities are thermodynamic functions that are directly related to chemical potential and can be
calculated from measured P-T-V properties of a gas, though we will not discuss how.  However, they
have meaning for solids and liquids as well as gases since solids and liquids have finite vapor pres-
sures.  Whenever a substance exerts a measurable vapor pressure, a fugacity can be calculated.  Fugaci-
ties are relevant to the equilibria between species and phase components, because if the vapor phases
of the components of some solid or liquid solutions are in equilibrium with each other, and with their
respective solid or liquid phases, then the species or phases components in the solid or liquid must be
in equilibrium.  One important feature of fugacities is that we can use them to define another thermo-
dynamic parameter, the activity, a:

  
ai ≡≡ ƒi

ƒi
o 3.45

Ä¡ is the standard state fugacity.  Its value depends on the standard state you choose.  You are free to
choose a standard state convenient for whatever problem you are addressing.

Table 3.1. H2O and CO2Fugacity Coefficients
H2O T ¡C
P, MPa 400 600 800 1000

50 0.4 0.78 0.91
200 0.2 0.52 0.79 0.94
400 0.21 0.54 0.84 1.03
600 0.28 0.67 1.01 1.22
800 0.4 0.89 1.27 1.49

CO2 T ¡C
P, MPa 377 577 777 977

50 1.02 1.1 1.12 1.12
200 1.79 1.86 1.82 1.75
400 4.91 4.18 3.63 3.22
600 13.85 9.48 7.2 5.83
800 38.73 21.33 14.15 10.44

From Kerrick and Jacobs (1981).
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Example 3.2.  Using Fugacity to Calculate Gibbs Free Energy
The minerals bruci te (Mg(OH)2) and periclase (MgO) are related by the reaction:

Mg(OH)2 ® MgO + H2O
Which side of th is reaction represent the stable phase assemblage at 600¡ C and 200 MPa?

Answer: We learned how to solve th is sort of problem in Chapter 2: the side with  the lowest
Gibbs Free Energy wil l  be the stable assemblage.  Hence, we need only to calculate ÆGr at 400¡ C and
600 MPa.  To do so, we use equation 2.169:

 
∆GT’,P’ =∆Go – ∆SrdT

Tref

T’

+ ∆VrdP
Pref

P’
(2.169)

Our earl ier examples deal t with  sol ids, which  are incompressible to a good approximation,and we
could simply treat ÆVr as being independent of pressure.  In that case, the solution to the fi rst integral
on the left was simply ÆVr(P«- Pref).  The reaction in th is case, l ike most metamorphic reactions, in-
volves H2O, which  is certainly not incompressible: the volume of H2O, as steam or a supercri tical
fluid, i s very much a function of pressure.  LetÕs isolate the di fficul ty by dividing ÆVr into two parts:
the volume change of reaction due to the sol ids, in th is case the di fference between molar volumes of
periclase and bruci te, and the volume change due to H2O.   We wil l  denote the former as ÆVS and as-
sume that i t i s independent of pressure.  The second integral  in 2.169 then becomes:

  
∆VrdP

Pref

P’

= ∆VS(P’– Pref) + VH2OdP
Pref

P’ 3.46

How do we solve the pressure integral  above?  One approach  is to assume that H2O is an ideal
gas.

For an ideal  gas:
V

RT
P=

so that the pressure integral  becomes:

RT
P dP RT

P
PrefP

P

ref

=∫ ln
''

Steam is a  very non-ideal  gas, so th is approach  would not yield a very accurate answer.  The con-
cept of fugaci ty provides us with  an al ternative solution.  For a non-ideal  substance, fugaci ty bears
the same relationship to volume as the pressure of an ideal  gas.  Hence we may substi tute fugaci ty for
pressure so that the pressure integral  in equation 2.169 becomes:

RT
P d RT

ref
ref

ƒ = ƒ
ƒ

ƒ

ƒ

∫ ln
'

'

where we take the reference fugaci ty to be 0.1 MPa.  Equation 3.46 thus becomes:

  
∆VrdP

Pref

P’

= ∆VS(P’– Pref) + VH2Odƒ
ƒref

ƒ’

= ∆VS(P’– Pref) + RT ln ƒ’
ƒref

3.47

We can then compute fugaci ty using equation 3.44 and the fugaci ty coefficients in Table 3.1.
Using the data in Table 2.2 and solving the temperature integral  in 2.169 in the usual  way

(equation 2.172), we calculate the ÆGT,P i s 3.29 kJ.  Since i t i s posi tive, the left side of the reaction,
i .e., bruci te, we predict that bruci te is stable.

The ÆS of th is reaction is posi tive, however, implying that at some temperature, periclase plus
water wil l  eventual ly replace bruci te.  To calculate the actual  temperature of the phase boundary re-
quires a trial  and error approach : for a  given pressure, we must fi rst guess a temperature, then look up
a value of φ in Table 2.1 (intepolating as necessary), and calculate ÆGr. Depending on our answer, we
make a revised guess of T and repeat the process unti l  ÆG is 0.  Using a spreadsheet, however, th is
goes fairly quickly.  Using th is method, we calculate that bruci te breaks down at 660¡ C at 200 MPa,
in excel lent agreement with  experimental  observations.
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If we substitute equation 3.45 into equation 3.42, we obtain the important relationship:
 

µi = µi
o + RT ln ai 3.48

The ÔcatchÕ on selecting a standard state for Ä¡, and hence for determining ai in equation 3.48, is tha t
this state must be the same as the standard state for µ¡.  Thus we need to bear in mind that standard
states are implicit in the definition of activities and that those standard states are tied to the stan-
dard-state chemical potential.  Until the standard state is specified, activities have no meaning.

Comparing equation  3.48 with3.26 leads to:
ai,ideal = Xi 3.49

Thus in ideal solutions, the activity is equal to the mole fraction.
Chemical potentials can be thought of as driving forces that determine the distribution of compo-

nents between phases of variable composition in a system.  Activities can be thought of as the e f f ec-
tive concentration or the availability of components for reaction.  In real solutions, it would be conve-
nient to relate all non-ideal thermodynamic parameters to the composition of the solution, because
composition is generally readily and accurately measured.  To relate activities to mole fractions, we
define a new parameter, the rational activity coefficient, λ .  The relationship is:

ai = Xi λi 3.50
The rational activity coefficient differs slightly in definition from the practical activity coefficient,
γ, used in aqueous solutions.  λ is defined in terms of mole fraction, whereas γ is defined in terms of
moles of solute per moles of solvent.  Consider for example the activity of Na in an aqueous sodium
chloride solution.  For  λNa, X is computed as:

XNa = 
[Na]

[Na] + [Cl] + [H2O ]  

whereas for γNa, XNa is:  
[Na]

[H2O] 

where the bracket indicates moles of substance.  In very dilute solution, the difference is trivial.

Excess Functions

The ideal solution model provides a useful reference for solution behavior.   Comparing real solu-
tions with ideal ones leads to the concept of excess functions, for example:

Gexcess = Greal  - Gideal 3.51
which can be resolved into contributions of excess enthalpy and entropy:

Gexcess = Hexcess  - TSexcess 3.52
The excess enthalpy is a measure of the heat released during mixing the pure end-members to form
the solution, and the excess entropy is a measure of all the energetic effects resulting from a nonran-
dom distribution of species in solution.  We can express excess enthalpy change in the same way as ex-
cess free energy, i.e.:

Hexcess = Hreal  - Hideal 3.53
But since ÆHideal mixing = 0, ÆHexcess = ÆHreal; in other words, the enthalpy change upon mixing
is the excess enthalpy change.  Similar expressions may, of course, be written for volume and entropy
(bearing in mind that unlike volume and enthalpy, ÆSideal is not zero).

Combining equation 3.48 with equation 3.50 leads to the following:
  µi = µi

o + RT ln Xiλ 3.54

which we can rewrite as:   µ i = µ i
o + RT lnX i + RT lnλ i 3.55
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Depression of the Melting Point
In northern cl imates such  as Ithaca, NY

salting road and sidewalks to melt snow and
ice is a  common practice in winter.  We have
now acquired the thermodynamics tools to
show why sal t melts ice and that th is effect
does not depend on any special  properties of
sal t or water.  Depression of the melting point
by addition of a  second component to a pure sub-
stance is a  general  phenomenon.  Suppose that
we have an aqueous solution containing sodium
chloride coexisting with  pure ice.  If the two
phases are at equi l ibrium, then the chemical
potential  of water in ice must equal  that of wa-
ter in the solution, i .e.:

   µH2O
ice = µH2O

aq 3.56

(we are using subscripts to denote the compo-
nent, and superscripts to denote the phase; a q
denotes the l iquid aqueous solution).  We de-
fine our standard state as that of the pure sub-
stance.  According to equ. 3.48, the chemical  po-
tential  of water in the solution can be expressed
as:

  µH2O
aq = µH2O

o + RTln aH2O
aq 3.57

µ H O
o

2 denotes the chemical  potential  of pure
l iquid water.  Substi tuting 3.56 into 3.57 and
rearranging, we have:

  µH2O
ice – µH2O

o = RTln aH2O
aq 3.58

  Ice wil l  incorporate very l i ttle sal t; i f we as-
sume i t i s a  pure phase, we may wri te 3.58 as:

  µH2Os

o – µH2O
o = RTln aH2O

aq 3.58a

or   µH2O
o – µH2Os

o = –RTln aH2O
aq 3.59

(The order is important: equation 3.58a de-
scribes the freezing process, 3.59 the melting
process.  These processes wil l  have equal  and
opposi te entropies, enthalpies, and free ener-
gies).  The left hand side of 3.59 is the Gibbs
Free Energy of melting for pure water, which
we denote as ÆG m

o
 (ÆG m

o
 i s 0 at the melting

temperature of pure water, which  we denote
T m

o
, but non-zero at any other temperature).

We may rewrite 3.59 as:
  ∆Gm

o = –RTlnaH2O
aq 3.60

If we assume that ÆH and ÆS are independent
of temperature (which  is not unreasonable over
a l imited temperature range) and we assume
pressure is constant as wel l , the left hand side
of the equation may also be wri tten as:

  ∆Gm
o = ∆Hm

o – T∆Sm
o 3.61

 Substi tuting 3.59 into 3.58:
  ∆Hi,m

o –T ∆Sm
o = –RTlnaH2O

aq 3.62

At the melting temperature of pure water,
ÆG m

o
i s zero, so that:

  ∆Hm
o = Tm

o∆Sm
o

Substi tuting th is into 3.58 and rearranging:
  ∆Sm
o Tm

o – T = –RTlnaH2O
aq 3.63

Further rearrangement yields:
  Tm
o

T
– 1 =

–R

∆Sm
o

ln aH2O
aq

For a reasonably di lute solution, the activi ty
of water wil l  approximately equal  i ts mole
fraction, so that:

  Tm
o

T
– 1 =

–R

∆Sm
o

ln XH2O
aq 3.64

The entropy of melting is always posi tive and
since X is always less than 1, the left hand side
of 3.64 must always be posi tive.  Thus the ratio
T m

o
/T must always be greater than 1.  So the

temperature at which  an aqueous solution wil l
freeze wil l  always be less than the melting
point of pure water.  Sal ting of roads is not a
question of geochemical  interest, but there are
many examples of depression of the freezing
point of geological  interest.  For example, the
freezing point of the ocean is about Ð2¡ C.  And
this phenomenon is important in igneous pe-
trology, as we shal l  see in the next chapter.  A
related phenomenon of geological  interest is
elevation of the boi l ing point of a  l iquid: for
example hydrothermal  solutions boi l  at tem-
peratures significantly above that of pure wa-
ter.  Can you demonstrate that elevation of the
boi l ing point of an ideal  solution depends only
on the mole fraction of the solute?
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Equation 3.64 shows how activity coefficients relate to Henry's and Raoult's Laws.  Comparing equa-
tion 3.64 with equation 3.39, we see that in the region where Henry's Law holds, that is dilute solu-
tions, the activity coefficient is equal to Henry's law constant.  In the region where Raoult's Law
holds, the activity coefficient is 1 and equation 3.64 reduces to equation 3.26 since RT ln λ i = 0.  

Since we know that
  ∂G

∂ni P,T,nj, j≠i

= µi = µi
o + RT ln Xiλi

comparing equations 3.51 and 3.64, we find that:
  ∂ G excess

∂n i T, P, n j

= RT ln λ i

which is the same as:   Gex i = RT lnλ i 3.65

So that the molar excess free energy associated with component i is simply RT times the log of the ac-
tivity coefficient.  The total molar excess free energy of the solution is then:

   Gexcess = RT Xi lnλ i∑
i

3.66

We will see the usefulness of the concept of excess free energy shortly when we consider activities
in electrolyte solutions.  It will also prove important in our treatment of non-ideal solid solutions and
exsolution phenomena in the next chapter.

Electrolyte Solutions
Electrolyte solutions are solutions in which the solute dissociates to form ions, which facilitate

electric conduction.  Seawater is an obvious example of a natural electrolyte solution, but all natural
waters are also electrolytes, though generally more dilute ones.  These solutions, which Lavoisier*

called the Òrinsings of the EarthÓ are of enormous importance in many geologic processes.

The Nature of Water and Water-Electrolyte Interaction

There is perhaps no compound so familiar to us as H2O.  Common place though it might be, H2O is
the most remarkable compound in nature.  Its unusual properties include: the highest heat capacity of
all solids and liquids except ammonia, the highest latent heat of vaporization of all substances, the
highest surface tension of all liquids, its maximum density is at 4¡ C, with density decreasing below
that temperature (negative coefficient of thermal expansion), the solid form is less dense than the
liquid (negative Clapeyron slope), and finally, it is the best solvent known, dissolving more sub-
stances and in greater quantity than any other liquid.  We will digress here briefly to consider the
structure and properties of H2O and the nature of water-electrolyte interactions from a microscopic
perspective.

Many of the unusual properties of water arise from its non-linear polar structure, which is illus-
trated in Figure 3.10a.  The polar nature of water gives rise to van der Waals forces and the hydrogen
bond discussed in Chapter 1.  The hydrogen bond, which forms between hydrogens and the oxygens of
adjacent molecules, imposes a dynamic partial structure on liquid water (Fig. 3.10b).  These bonds con-
tinually break and new ones reform, and there is always some fraction of unassociated molecules.  On
average, each water molecule is coordinated by 4 other water molecules.  When water boils, all hy-
drogen bonds are broken.  The energy involved in breaking these bonds accounts for the high heat of
vaporization.

The dissolving power of water is due to its dielectric nature.  A dielectric substance is one that re-
duces the forces acting between electric charges.  When placed between two electrically charged
plates (a capacitor), water molecules will align themselves in the direction of the electric field.  As a

                                                
*Antoine Lavoisier (1743-1794) laid the foundations of modern chemistry in his book, Trait� d e
El�mentaire de Chemie, published in 1789.  He died at the guillotine during the French Revolution.
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result, the molecules oppose the charge on the
plates and effectively reduce the transmission of
the electric field.  Mathematically, we may state
this as follows.  The potential energy of interaction
between two charges q1 and q2 separated by a
distance r in a meduim of permittivity ε is:

  
Uelectro. =

q1 q2
4πε r

3.67

The relative permittivity, or dielectric constant, εr,
of a substance is defined as the ratio of the capaci-
tance observed when the substance is placed be-
tween the plates of a capacitor to the capacitance
of the same capacitor when a vacuum is present
between the plates:

  εr = ε
ε0

3.68

where ε0 is the permittivity of a vacuum (8.85 ×
10-12 C2/J m).  So the functional form of equation 3.67
is:

  
Uelectro. =

q1 q2

4πε0εrr
2

3.69

The relative permittivity of water is 78.54 at 25¡C
and 1 atm.  For comparison, the relative permit-
tivity of methane, a typical non-polar molecule, is
1.7.

Water molecules surrounding a dissolved ion
will tend to align themselves to oppose the charge
of the ion.  This insulates the ion from the electric
field of other ions.  This property of water accounts
in large measure for its dissolving power.  For example, we could easily calculate that the energy re-
quired dissociate NaCl (i.e., the energy required to move Na+ and ClÐ ions from their normal intera-
tomic distance in a lattice, 2.36� to infinite separation) is about 585 kJ/mol.  Because water has a di-
electric constant of about 80, this energy is reduced by a factor of 80, so only 7.45 kJ are required for dis-
sociation.  The point could also be illustrated by calculating the electrostatic interaction energy of
ions in solution.  In a 1 molar solution of NaCl, ions will be separated by roughly 10� on average.  In a
vacuum, this separation would correspond to an interaction energy of 138 kJ/mol.  In water, the inter-
action energy is reduced by a factor of 80 to 1.8 kJ/mol.

The charged nature of ions and the polar nature of water result in the solvationof dissolved ions.
Immediately adjacent the ion, water molecules align themselves to oppose the charge on the ion, e.g.,
the oxygen of the water molecule will be closest to a cation (Figure 3.11).  These water molecules are
called the first solvation shell or layer and they are effectively bound to the ion, moving with it as it
moves.  Beyond the first solvation shell is a region of more loosely bound molecules that are only par-
tially oriented, called the second solvation shell or layer.  The boundary of this latter shell is dif-
fuse: there is no sharp transition between oriented and unaffected water molecules.  The energy liber-
ated, called the solvation energy, in this process is considerable.  For NaCl, for example, it is -765
kJ/mol (it is not possible to deduce the solvation energies of Na+ and ClÐ independently).  The total
number of water molecules bound to the ion is called the solvation number.  Solvation effectively in-
creases the electrostatic radius of cations by about 0.9 � and of anions by about 0.1� per unit of charge.  
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Figure 3.10. (a.) Structure of the water mole-
cule.  Bond angle in the liquid phase is 108¡,
105¡ in the gas.  The hydrogens retain a par-
tial positive charge and the oxygen retains a
partial positive charge.  (b.) Partial structure
present in liquid water.  Lines connecting adja-
cent molecules illustrate hydrogen bonds.
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An additional effect of solvation is electrostric-
tion.  Water molecules in the first solvation sphere
are packed more tightly than they would otherwise
be.  This is true, to a lesser extent, of molecules in the
secondary shell.  In addition, removal of molecules
from the liquid water structure causes partial col-
lapse of this structure.  The net effect is that the vol-
ume occupied by water in an electrolyte solution is less
than in pure water.  The extent of electrostriction de-
pends strongly on temperature and pressure.

A final interesting property of water is that some
fraction of water molecules will autodissociate.  In
pure water at standard state conditions, one in every
10-7 molecules will dissociate to form H+ and OHÐ ions.
Although in most thermodynamic treatments the pro-
tons produced in this process are assumed to be free
ions, most will combine with water molecules to form
H3O+ ions.  OH+ is called the hydroxl ion; the H3O+ is
called hydronium.

Some Definitions and Conventions

The first two terms we need to define are solvent
and solute.  Solvent is the substance present in
greatest abundance in a solution; in the electrolyte
solutions the we will discuss here, water is always
the solvent.  Solute refers to the remaining substances
present in solution.  Thus in seawater, water is the
solvent and NaCl, CaSO4, etc., are the solutes.  We

may also refer to the individual ions as solutes.

Concentration Units

 Geochemists concerned with aqueous solutions commonly use a variety of concentration units other
than mole fraction.  The first is molality (abbreviated as lower-case m), which is moles of solute per
kg of solvent (H2O).  Molality can be converted to moles solute per moles solvent unit by multiplying
by 55.51 mol/kg.  A second unit is molarity (abbreviated as uppercase M), which is moles of solute per
liter of solution.  To convert molality to mole fraction, we would divide by the molecular weight of
solvent and use the rational activity coefficient.  Natural solutions are often sufficiently dilute tha t
the difference between molality and molarity is trivial (seawater, a relatively concentrated natural
solution, contains only 3.5 weight percent dissolved solids).   Another common unit is weight fraction
(i.e., grams per gram solution), which may take several forms, such as weight percentage, parts per
thousand or parts per million (abbreviated %, ppt or ä, ppm or mg/kg).  To convert to mole fraction,
one simply divides the weight of solute and H2O by the respective molecular weights.  

pH

One of the most common parameters in aqueous geochemistry is pH.  pH is defined as the negative
logarithm of the hydrogen ion activity:

pH log aH≡ +( ) 3.70

+

Figure 3.11.  Solvation of a cation in aqueous
solution.  In the first solvation shell (dark
gray), water molecules are bound to the
cation and oriented so that the partial
negative charge on the oxygen faces the
cation.  In the second solvation shell (light
gray) molecules are only loosely bound are
partially oriented.
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Standard State and Other Conventions

The first problem we must face in determining activities in electrolyte solutions is specifying the
standard state.  With gases, the standard state is generally the pure substance (generally at 298 K
and 1 atm), but this is generally not a reasonable choice for electrolytes.  An NaCl solution will be-
come saturated at about 0.1 XNaCl, and crystalline NaCl has very different properties from NaCl in
aqueous solution.  By convention, a hypothetical standard state of unit activity at 1 molal concentra-
tion is chosen:

a° = m = 1 3.71
 Activity is generally given units of molality in this case (it is dimensionless as we defined it in equa-
tion 3.45), so that in this hypothetical standard state, activity equals molality.  The standard state
is hypothetical because, for most electrolytes, the activity will be less than 1 in a 1 m (molal) solu-
tion.  Because the standard state generally is unattainable in reality, we must also define an attain-
able reference state, from which experimental measurements can be extrapolated.  By convention, t h e
reference state is that of an infinitely dilute solution, i.e., the HenryÕs Law state.  For multicompo-
nent solutions, we also specify that the concentrations of all other components be held constant.  Hence
the reference state is:

m

i

i
j

i

a
m m cons t

→
=

0
1lim ( tan ) 3.72

This convention is illustrated in Figure 3.12.  In such solutions, the activity coefficient can be shown to
depend on the charge of the ion, its concentration, and the concentration of other ions in the solution as
well as temperature and other parameters of the solute.  Comparing 3.72 with equations 3.48 and 3.50,
we see that under these conditions, the activity coefficient is 1.  By referring to infinite dilution, we
are removing the effect of solute-solute interactions.  The standard state properties of an electrolyte
solution therefore only take account of solvent-solute interactions.

Clearly, it is impossible to measure the properties of the solute, such as chemical potential or mo-
lar volume, at infinite dilution.  In practice, this problem is overcome by measuring properties at some
finite dilution and extrapolating the result to infinite dilution.  Indeed, even at finite concentrations,
it is not possible to measure directly many properties of electrolytes.  Volume is a good example.  One
cannot measure the volume of the solute, but one can measure the volume change of the solution as a
function of concentration of the solute.  Then by assum-
ing that the partial molar volume of water does not
change, a partial molar volume of the solute can be
calculated.  This is called the apparent molar volume,
V
Ð

 A.  The apparent molar volume of NaCl as a function
of molarity is shown in Figure 3.13.  In essence, this
convention assigns all deviations from non-ideality to
the solute, and allow us to use the partial molar vol-
ume of pure water in the place of the true, but un-
known, molar volume of water in the solution.  Thus
the volume of NaCl solution is given by:

V = nwV
–

 w + nNaClV
–

 A-NaCl 3.73
This convention leads to some interesting effects.

For example, the apparent molar volume of magne-
sium sulfate increases with pressure, and many other
salts, including NaCl (Fig. 3.14), exhibit the same be-
havior.  Just as curiously, the apparent molar volume
of sodium chloride in saturated aqueous solution be-
comes negative above ~200¡ C (Figure 3.14).  Many
other salts show the same effect.  These examples em-

Henry's L
aw

Standard State

Refernce State

m ≠ a

m, molality

ao = 11.0

1.0

a

Figure 3.12.  Relationship of activity and
molality, reference state, and standard state
for aqueous solutions.  After Nordstrom and
Munoz (1986).
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phasize the ÒapparentÓ nature of molar volume when defined in this way.  Of course, the molar vol-
ume of NaCl does not actually become negative; rather this is result of the interaction between Na+

and ClÐ and H2O (electrostriction) and the convention of assigning all non-ideality to sodium chlo-
ride.

The concentration of a salt consisting of νA moles of cation A and νB moles of cation B and is related
to the concentration of its constituent ionic species as:

mA = νAmAB and mB = νBmAB 3.74
By convention, the thermodynamic properties of ionic species A and B are related to those of the salt
AB by:

ΨAB ≡ νAΨA + νBΨB 3.75
where Ψ is some thermodynamic property.  Thus the chemical
potential of MgCl2 is related to that of Mg+  and ClÐ as:

µMgCl2 = µMg+ + 2 × µCl-

The same holds for enthalpy of formation, entropy, molar vol-
ume, etc.

  A final important convention is that the partial molar
properties and energies of formation for the proton are taken t o
be zero under all conditions.

Activities in Electrolytes

The assumption we made for ideal solution behavior was
that interactions between molecules (species might be a better
term in the case of electrolyte solutions) of solute and molecules
of solvent were not different from those interactions between
solvent ions only.  In light of the discussion of aqueous solutions
earlier, we can see this is clearly not going to be the case for an
electrolyte solution.  We have seen significant deviations from
ideality even where the components have no net charge (e.g.,
water-ethanol); we can expect greater deviations due to elec-
trostatic interactions between charged species.

The nature of these interactions suggests that a purely mac-
roscopic viewpoint, which takes no account of mo-
lecular and ionic interactions, may have severe
limitations in predicting equilibria involving elec-
trolyte solutions.  Thus chemists and geochemists
concerned with the behavior of electrolytes have
had to incorporate a microscopic viewpoint into
electrolyte theory.  On the other hand, they did
not want to abandon entirely the useful description
of equilibria based on thermodynamics.  We have
already introduced concepts, the activity and the
activity coefficient, which allow us to treat non-
ideal behavior within a thermodynamic frame-
work.  The additional task imposed by electrolyte
solutions, and indeed all real solutions, therefore,
is not to rebuild the framework, but simply to d e -
termine activities from readily measurable prop-
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erties of the solution.   The dependence of all partial molar properties of a solute on concentration can
be determined once the activity coefficient and its temperature and pressure dependence are known.

The Debye-Hückel and Davies Equations

Both solvent-solute and solute-solute interactions in electrolytes give rise to excess free energies
and non-ideal behavior.  By developing a model to account for these two kinds of interactions, we can
develop an equation which will predict the activity of ions in electrolyte solution.

In an electrolyte solution, each ion will exert an electrostatic force on every other ion.  These forces
will decrease with the increase square of distance between ions.  The forces between ions will be re-
duced by the presence of water molecules, as we discussed earlier.  As total solute concentration in-
creases, the mean distance between ions will decrease.  Thus we can expect that activity will depend
on the total ionic concentration in the solution.  The extent of electrostatic interaction will also obvi-
ously depend on the charge of the ions involved: the force between Ca2+  and Mg2+ ions will be greater
at the same distance than between Na+ and K+ ions.  We can expect that our final equation will take
this into account as well.

An obvious approach to the problem is to use equation 3.69 to calculate the interaction energy be-
tween ions.  However, calculating the force between each and every ion in solution is an impossible
task.  Debye and H�ckel (1923) therefore used a different approach.  In the Debye-H�ckel Theory, a
given ion is considered to be surrounded by an atmosphere of oppositely charged ions (this atmosphere
is distinct from, and unrelated to, the solvation shell).  If it were not for the thermal motion of the
ions, the structure would be analogous to that of a crystal lattice, though considerably looser.  Ther-
mal motion, however, tends to destroy this structure.  The density of charge in this ion atmosphere in-
creases with the square root of the ionic concentrations, but increases with the square of the charges on
those ions.  The dielectric effect of intervening water molecules will tend to reduce the interaction be-
tween ions.  DebyeÐH�ckel Theory also assumes that:

¥ all electrolytes are completely dissociated into ions,
¥ the ions are spherically symmetrical charges (hard spheres),
¥ the solvent is structureless; the sole property is its permittivity,
¥ the thermal energy of ions exceeds the electrostatic interaction energy.
The electrostatic interaction energy between the cloud and the ion is described by the PoissonÐ

Boltzmann equation, a second order differential equation for which there is not direct solution.  Debye
and H�ckel used the following approximate solution:

  
Uelectro =

e2 zi
2

8πε0εr

κ
1 + κå

3.76

where 

  
κ =

NAe2ρ
ε0εrkT cjzj

2Σ
j

1/2

3.77
and e is the unit of electrical charge, zi is the valance of the ion the central ion, zj is the valence of
ionic species j, cj is the molar concentration of species j, NA is AvagadroÕs number, k is BoltzmannÕs con-
stant, ρ is the density of water, and � is the closest distance that two ions may approach (which may
be thought of as the effective radius of the central ion).  κ has units of inverse length and is called the
Debye inverse length.  We can simplify this equation somewhat by noting that most of these terms
are constants.  Collecting all the constants in κ into a single new one, which we call L, κ becomes:

  κ = L
T cjzj

2Σ
j

1/2

3.78
The summation term is a measure of the total concentration of charge in solution.  Indeed, it is closely
related to the Ionic Strength parameter, first introduced by Lewis and Randall.  The Lewis and Ran-
dall Ionic Strength of a solution is given by:
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I =

1
2

mjzj
2∑

j

3.79

where m is the molality of the ith ion and z is its charge.  Ionic strength has units of molality.  Substi-
tuting ionic strength into 3.78 we have:

  κ = KT–1/2 I1/2 3.80
 where K is a constant equal to (2L)1/2.  Collecting the constants in 3.76 into constant J and substituting
into it equation 3.80, we have:

 
Uelectro = J zi

2 KT–1/2I1/2

1 + KT–1/2 åI
1/2

3.81

Comparing this version with 3.76, we see that J is a constant that depends only on the nature of the
solvent, and K is a constant that depends on the nature of the solvent and temperature.

Eqaution 3.81 gives the electrostatic interaction energy, but how do we relate this to activity?  We
noted that the electrostatic interaction is an excess free energy.  Thus we can relate Uelectro to Gex, and,
from equation 3.65, to the activity coefficient:

  
RT lnλ i = Gex i = Uelectro = J zi

2 KT–1/2I1/2

1 + KT–1/2 åI
1/2

3.82

Rearranging, we have:
  

lnλ i = KJ
RT3/2

zi
2 I1/2

1 + KT–1/2åI
1/2

3.83

Equation 3.83 is known as the Debye-H�ckel Extended Law; we will refer to it simply as the Debye-
H�ckel Equation.  It is usually written as:

   

log10 γ i =
-Azi

2 I

1 + Bå I
3.84

The parameter � is the known as the hydrated ionic radius, or effective radius (significantly larger
than ionic radius).  A and B are known as  solvent parameters.  By comparing 3.84 and 3.83, we can see
that :

  
B = K

T1/2
=

2NAe2ρ
ε0ε kT

1/2
3.85

and
  

A = KJ
R T3/2

= e3

8π
2NAρ

ε0ε 3 kT 3

1/2
3.86

 Rather than compute them directly, A and B are generally taken from tabulated values.  Table 3.2a
summarizes the Debye-H�ckel constants over a range of temperature and Table 3.2b gives values of �
for a number of ions.

For very dilute solutions, the denominator of equation 3.84 approaches 1 (because I approaches 0),
hence equation 3.84 becomes:

  log10 γ = -Az2 I 3.87
This equation is known as the Debye-H�ckel Limiting Law (so called because it applies in the limit
of very dilute concentrations).

Davies (1938, 1962) introduced an emperial modification of the Debye-H�ckel equation.  Davies
equation is:
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log10 γ i = -Azi

2 I

1 + I
–bI 3.88

where A is the same as in the Debye-
H�ckel equation and b is an emprically
determined parameter with a value of
0.3.  It is instructive to see how the activ-
ity coefficient of Ca2+ would vary accord-
ing to Debye-H�ckel and Davies equa-
tions if we vary the ionic strength of the
solution.  This variation is shown in Fig-
ure 3.15.  The Davies equation predicts
that activity coefficients begin to increase
above ionic strengths of about 0.5 m.  For
reasons discussed below and in greater
detail in Chapter 4, activity coefficients
do actually increase at higher ionic

strengths.    On the whole, the Davies
equation is slightly more accurate for
many solutions at ionic strengths in
the range of 0.1 to 1 m.  Because of
this, as well as its simplicity, the
Davies equation is widely used.

Limitations to the Debye–Hückel
Approach

None of the assumptions made by
Debye and H�ckel hold in the abso-
lute.  Furthermore, the Poisson-
Boltzmann equation provides only an
approximate description of ion inter-
actions, and Debye and H�ckel used
an approximate solution of this equa-
tion.  Thus we should not expect the
Debye-H�ckel equations to provide an
exact prediction of activity
coefficients under all conditions.

Perhaps the greatest difficulty is the assumption of complete dissociation.  When ions approach
each other closely, the electrostatic interaction energy exceeds the thermal energy, which violates
the assumption made in the approximate solution of the Poisson-Boltzmann equation.  In this case,
the ions are said to be associated.  Furthermore, the charge on ions is not spherically symmetric and
this  asymmetry becomes increasingly important at short distances.  Close approach is obviously more
likely at high ionic strength, so not surprisingly the Debye-H�ckel equation breaks down at high
ionic strength.

We can distinguish two broad types of ion associations: ion pairs and complexes.  These two classes
actually form a continuum, but we will define a complex as an association of ions in solution that in-
volves some degree of covalent bonding (i.e., electron sharing).  Ion pairs, on the other hand, are held
together purely by electrostatic forces.  We will discuss formation of ion pairs and complexes in
greater detail in subsequent chapters.  Here we will attempt to convey only a very qualitative un-
derstanding of this effects.

Table 3.2a Debye-Hückel Solvent Parameters
T ¡C A B (× 10-8)

0 0.4911 0.3244
25 0.5092 0.3283
50 0.5336 0.3325
75 0.5639 0.3371

100 0.5998 0.3422
125 0.6416 0.3476
150 0.6898 0.3533
175 0.7454 0.3592
200 0.8099 0.3655
225 0.8860 0.3721
250 0.9785 0.3792
275 1.0960 0.3871
300 1.2555 0.3965

from Helgeson and Kirkham (1974).

Table 3.2b Debye-Hückel Effective Radii

Ion � (10Ð8 cm)

Rb+, Cs+, NH+, Ag 2.5

K+, ClÐ, BrÐ, IÐ, NO 3
– 3

OHÐ, FÐ, HSÐ, BrO 3
– , IO 4

– , MnO 4
– 3.5

Na+, HCO 3
– , H2PO 4

– , HSO 3
– , SO 4

2− , HPO 3
2− , PO 3

3− 4.0-4.5

Pb2+, CO 3
2− , SO 3

2− , 4.5

 Sr2+, Ba2+,  Cd2+, Hg2+, S2Ð 5

Li+, Ca2+, Cu2+, Zn2+, Sn2+,  Mn2+,  Fe2+,  Ni2+ 6

Mg2+, Be2+ 8

H+, Al3+, trivalent rare earths 9

Th4+, Zr4+, Ce4+ 11
from Garrels and Christ (1982).
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An ion pair  can be considered to
have formed when ions approach
closer than some critical distance
where the electrostatic energy, which
tends to bind them, exceeds twice the
thermal energy, which tends to move
them apart.  When this happens, the
ions are electrostatically bound and
their motions are linked.  This critical
distance depends on the charge of the
ions involved and is therefore much
greater for highly charged ions than
for singly charged ones.  As we will
show in Chapter 4, ion pairs involving
singly charged ions will never form,
even at high ionic strengths.  On the
other hand, multiply charged ions
will tend to form ion pairs even at very
low ionic strengths.

Formation of ion pairs will cause
further deviations from ideality.  We
can identify two effects.  First, the
effective concentration, or activity, of an ionic species than form ionic associations will be reduced.
Consider, for example, a pure solution of CaSO4.  If some fraction, α , of Ca2+ and SO 4

2− ions form ion
pairs, then the effective concentration of Ca2+ ions is:

[Ca2+]eff = [Ca2+]tot (1 – α) 3.89
(here we follow the usual convention of using brackets to denote concentrations).  The second effect is
on ionic strength.  By assuming complete dissociation, we similarly overestimate the effective concen-

                                                
  The term ion pair is a bit of a misnomer because such associations can involve more than two ions.  In
concentrated solutions, ion pairs may consist of a cation plus several anions.

0 0.2 0.4 0.6 0.8 1.0
Ionic Strength, m

0
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0.8

1

γCa2+ Debye-Hückel Davies

Figure 3.15. Variation of the Ca2+ activity coefficient with
ionic strength according to the Debye-H�ckel (black solid
line) and Davies equations (red dashed line).

Example 3.3: Calculating Activities Using the Debye-Hückel Equation
Given the composi tion for the av-

erage river water in column A in the
adjacent table, calculate the activi ty
of the Ca2+ ion at 25¡ C using the
Debye-H�ckel  equation.

Answer:  Our fi rst step is to convert
these concentrations to molal i ty by di -
viding by the respective molecular
weights.  We obtain the molal  concen-
trations in column B.  We also need to

compute z2 (column C), and the product z2m (column D).  Using equation 3.65, we calculate the
ionic strength  to be 0.00202 m.
 We substi tute th is value for I, then find � = 6, A = 0.5092, and B = 0.3283 in Table 3.1, and
obtain a value for the activi ty coefficient of 0.8237, and an activi ty of 0.308 ×10-3 m.  If we did
the calculation for other temperatures, we would see that for a  di lute solution such  as th is, the
activi ty coefficient is a  only weak function of temperature, decreasing to 0.625 at 300¡ C.

A B C D
Ion g/kg mol/kg × 103 z2 mz2 × 103

Cl Ð 0.0078 0.2201 1 0.2201
SO 4

2−
0.0112 0.1167 4 0.4667

HCO 3
–

0.0583 0.9557 1 0.9557
Mg2+ 0.0041 0.1687 4 0.6746
Ca2+ 0.015 0.3742 4 1.4970
K+ 0.0023 0.0588 1 0.0588
Na+ 0.0041 0.1782 1 0.1782
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tration in this example by a factor of (1 Ð
α ).  Because the Debye-H�ckel equation
predicts that the activity coefficient will
decrease with increasing ionic strength,
this effect causes an underestimation of the
actual activity coefficient.

A second phenomenon that causes devia-
tions from ideality not predicted by Debye-
H�ckel is solvation.  As we noted, an ion in
aqueous solution are surrounded by a sphere
of water molecules that are bound to i t .
Since those water molecules bound to the
ion are effectively unavailable for
reaction, the activity of water is reduced
by the fraction of water molecules bound in
solvation shells.  This fraction is trivial in
dilution solutions, but is important at high
ionic strength.  The result of this effect is to

increase the activity of ions.
Despite these problems, Debye-H�ckel has proved to be remarkably successful in predicting activ-

ity coefficients in dilute solution.  The extended Debye-H�ckel Equation (Equation 3.84) is most useful
at concentrations less than 0.1 M, which includes many natural waters and provides adequate approx-
imation for activity coefficients up to ionic strengths of about 1 M, which would include most solutions
of geological interest, including seawater.  As we noted above, the Davies equation is slightly more
accurate in the range of 0.1 to 1 m ionic strength.  Above these concentrations, both the Davies and De-
bye-H�ckel equations are increasingly inaccurate.  There are thus a variety of geological solutions for
which the Debye-H�ckel and Davies equations cannot be used, including hydrothermal solutions,
highly saline lakes, formation brines, and aerosol particles.  Figure 3.16 summarizes the typical ionic
strengths of natural solutions and the applicability of these equations.  The Debye-H�ckel Limiting
Law is useful only for very dilution solutions, less than 10-5 mol/kg, which is more dilute than essen-
tially all solutions of geological interest.  We will consider several methods of estimating activities
in higher ionic strength solutions in Chapter 4.

Solid Solutions and Their Activities
When we deal with solid solutions, we are again faced with the inadequacy of the purely macro-

scopic approach of classical thermodynamics.  There is little disadvantage to this approach for
gases, where the arrangement of molecules is chaotic.  But the crystalline state differs from that of
gases in that the arrangement of atoms in the crystal lattice is highly ordered, and the properties of
the crystal depend strongly on the nature of the ordering.  For this reason, we cannot afford to ignore
the arrangement of atoms in solids, particularly with respect to solutions.

Solid solutions differ from those of gases and liquids in several respects.  First, solution in the solid
state inevitably involves substitution.  While we can increase the concentration of HCl in water sim-
ply by adding HCl gas, we can only increase the concentration of Fe in biotite solid solution if we si-
multaneously remove Mg.  Second, solid solutions involve substitution at crystallographically dis-
tinct sites.  Thus in biotite a solid solution between phlogopite (KMg3AlSi3O10(OH)2) and annite
(KFe3AlSi3O10(OH)2) occurs as Fe2+ replaces Mg2+ in the octahedral site; the tetrahedral Si site and
the anion (O) sites remain unaffected by this substitution.  Third, substitution is often coupled.  For
example, the solid solution between anorthite (CaAl2Si2O8) and albite (NaAlSi3O8) in plagioclase
feldspar involves not only the substitution of Na+ for Ca2+, but also the substitution of Al3+ for Si4+.
The anorthite-albite solution problem is clearly simplified if we choose anorthite and albite as our
components rather than Na+, Ca2+, Al3+ and Si4+.   Choosing pure phase end members as components is

10-6 10-5 10-4 10-3 10-2 10-1 100 101

Groundwater

Rivers
Rain

Estuaries

Ocean

Brines

Hydrothermal

Debye-Hückel Extended Law

D-H
Limiting

Law

Davies Equation

Ionic Strength,  m
Figure 3.16.  Ionic strength of natural electrolyte solu-
tions and the applicability of the Debye-H�ckel and
Davies equations.
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not always satisfactory either because substitution on more than one site is possible, leading to an un-
reasonably large number of components, or because the pure phase does not exist and hence its thermo-
dynamic properties cannot be measured.

However we choose our components, we need a method of calculating activities that takes account
of the ordered nature of the crystalline state.  Here we will discuss two ideal solution models of crys-
talline solids.  We tackle the problem of non-ideal solid solutions in Chapter 4.

Ideal Solutions in Crystalline Solids

Mixing on Site Model

Many crystalline solids can be successfully treated as ideal solutions.  Where this is possible, the
thermodynamic treatment and assessment of equilibrium are greatly simplified.  A simple and often
successful model that assumes ideality but takes account of the ordered nature of the crystalline state
is the mixing on site model, which considers the substitution of species in any site individually.  In
this model, the activity of an individual species is calculated as:

ai,ideal = (Xi)
ν 3.90

where X is the mole fraction of the ith atom and ν is the number of sites per formula unit on which mix-
ing takes place.  For example, ν=2 in the Fe-Mg exchange in olivine, (Mg,Fe)2SiO4.  One trick to sim-
plifying this equation is to pick the formula unit such that ν = 1.  For example, we would pick
(Mg,Fe)Si1/2O2 as the formula unit for olivine.  We must then consistently choose all other thermody-
namic parameters to be 1/2 those of (Mg,Fe)2SiO4.

The entropy of mixing is given by:

∆ = ∑ ∑S R n X Xideal mixing j
j

i j i j
i

– ln, , 3.91

where the subscript j refers to sites and the subscript i refers to components, and n is the number of sites
per formula unit.  The entropy of mixing is the same as the configurational entropy, residual entropy,
or Ôthird law entropyÕ, i.e., entropy when TÊ=Ê0 K.  For example, in clinopyroxene, there are two ex-
changeable sites, a sixfold-coordinated M1 site, (Mg, Fe+2, Fe+3, Al+3), and an eightfold-coordinated
M2 site (Ca+2, Na+).  Here j ranges from 1 to 2 (e.g., 1 = M1, 2 = M2), but n = 1 in both cases (because both
sites accept only one atom).  i must range over all present ions in each site, so in this example, i ranges
from 1 to 4 (1 = Mg, 2 = Fe2+, etc.) when j=1 and from 1 to 2 when j = 2.  Since we have assumed an ideal
solution, ÆH = 0 and ÆGidealÊ= ÐTÆS.  In other words, all we need is temperature and equ. 3.91 to calcu-
late the free energy of solution.

In the mixing-on-site model, the activity of a phase component in a solution, for example pyrope in
garnet, is the product of the activity of the individual species in each site in the phase:

a X i

i
φ

ν= ∏ 3.92

where af is the activity of phase component φ, i are the components of pure φ, and νi is the stoichio-
metric proportion of i in pure φ.  For example, to calculate the activity of aegirine (NaFe3+Si2O6) in
aegirine-augite ([Na,Ca][Fe3+,Fe2+,Mg]Si2O6), we would calculate the product: XNaXFe3+.  Note that i t
would not be necessary to include the mole fractions of Si and O, since these are 1.

A slight complication arises when more than one ion occupies a structural site in the pure phase.
For example, suppose we wish to calculate the activity of phlogopite (KMg3Si3AlO10(OH)2) in a bi-
otite of composition K0.8Ca0.2(Mg0.17Fe0.83)3Si2.8Al1.2O10(OH)2.  The tetrahedral site is occupied by S i
and Al in the ratio of 3:1 in the pure phase end members.  If we were to calculate the activity of phlo-
gopite in pure phlogopite using equation 3.92, the activities in the tetrahedral site would contribute
only X4

Si X
4
Al  = (0.75)3(0.25)1 = 0.1055 in the pure phase.  So we would obtain an activity of 0.1055 in-

stead of 1 for phlogopite in pure phlogopite.  Since the activity of a phase component must be one
when it is pure, we need to normalize the result.  Thus we apply a correction by multiplying by the
raw activity we obtain from 3.92 by 1/(0.1055) = 9.481, and thus obtain an activity of phlogopite of 1.
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Local Charge Balance Model

Yet another model for the calculation of activities in ideal solid solutions is the local charge b a l -
ance model.  A common example is the substitution of Ca for Na in the plagioclase solid solution
(NaAlSi3O8ÑCaAl2Si2O8).  To maintain charge balance, the substitution of Ca2+ for Na+ in the octa-
hedral site requires substitution of Al3+ for Si4+ in the tetrahedral site to maintain local charge bal-
ance.  In this model, the activity of the end-member of phase component is equal to the mole fraction
of the component (see Example 3.5).

Equilibrium Constants
Now that we have introduced the concepts of activity and activity coefficients, we are ready for

one of the most useful parameters in physical chemistry: the equilibrium constant.  Though we can
predict the equilibrium state of a system, and therefore the final result of a chemical reaction, from
the Gibbs Free Energy alone, the equilibrium constant is a convenient and suscinct way express this.
As we shall see, it is closely related to, and readily derived from, the Gibbs Free Energy.

Derivation and Definition

Consider a chemical reaction such as:
aA + bB ® cC + dD

carried out under isobaric and isothermal conditions. The Gibbs Free Energy change of this reaction
can be expressed as:

G = cµc + dµd – aµa – bµb 3.93
At equilibrium, ÆG must be zero.  A general expression then is:

   ∆G = νiµi∑
i

= 0 3.94

Example 3.4. Calculating Activities Using the Mixing on Site Model
Sometimes it is desirable to calculate the activities of pure end member components in solid solu-

tions.  Garnet has the general formula X3Y2Si3O12.  Calculate the activity of pyrope, Mg3Al2Si3O12, in
a garnet solid solution of composition:

Mg.382Fe2.316
2+ Mn.167Ca.156 Al1.974Fe.044

3+ Si3O12

Answer:  The chemical potential of pyrope in garnet contains mixing contributions from both Mg in the
cubic site and Al in the octahedral site:

µpy
gt  = µpy

o  + 3RTlnXMg + 2RTlnXAl = RTln Xmg
3 XAl

2

The activity of pyrope is thus given by:
 a py
gt = X py

gt = XMg
3 XAl

2

In the example composition above, the activity of Mg is:

aMg = XMg
3  = 

[Mg]

[Mg] + [Fe2+] + [Mn] + [Ca]

3
 = 0.1263 = 0.002

and that of Al is:
 

a Al = X Al
2 =

[Al]

Al] + [Fe3+]

2
= 0.976 2 = 0.956

The activity of pyrope in the garnet composition above is 0.002 x 0.956 = 0.00191.  There is, of course,
no mixing contribution from the tetrahedral site because it is occupied only by Si in both the solution
and the pure pyrope phase.
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where νi is the stoichiometric coefficient of species i.  Equilibrium in such situations need not mean
that all the reactants (i.e., those phases on the left side of the equation) are consumed to leave only
products.  Indeed, this is generally not so.  Substituting 3.45 into 3.94 we obtain:

   νi
µi

o∑
i

+ RT νi
ln ai∑

i

= 0 3.95

or:
   νi

µi
o∑

i

+ RT ln ai
ν

i∏
i

= 0 3.96

The first term is simply the standard state Gibbs Free Energy change, ÆG¡, for the reaction.  There can
be only one fixed value of ÆG¡ for a fixed standard state pressure and temperature, and therefore of
the activity products.  The activity products are therefore called the equilibrium constant K, famil-
iar from elementary chemistry:

  K = ai
νν iΠΠ

i
3.97

Substituting 3.97 into 3.96 and rearranging, we see that the equilibrium constant is related to the
Gibbs Free Energy change of the reaction by the equation:

Example 3.5: Activities Using the Local Charge Balance Model
Given the adjacent analysis of a  plagioclase crystal , what are the ac-
tivi ties of albi te and anorth i te in the solution?
Answer:  According to the l oca l  ch a rge  ba l a nce  mode l , the activi ty of
albi te wil l  be equal  to the mole fraction of Na in the octahedral  si te.  To
calculate th is, we fi rst must convert the weight percent oxides to for-
mula units of cation.  The fi rst step is to calculate the moles of cation
from the oxide weight percents.  First, we can convert weight percent
oxide to weight percent cation using the formula:

wt. % cation = wt % oxide × 
atomic  wt.  cation  ×  formula  units  cation  in  oxide

molecular  wt.  oxide  

Next, we calculate the moles of cation:   moles cation = 
wt  %  cation

  atomic  wt.  cation   

Combining these two equations, the Ôatomic wt. cationÕ terms cancel  and we have:

moles cation = wt % oxide × 
formula  units  cation  in  oxide

molecular  wt.  oxide    

Next, we want to calculate the number of moles of each  cation per formula unit.  A general  formula for
feldspar is: XY4O8, where X is Na, K, or Ca in the octahedral  si te and Y is Al  or Si  in the tetrahedral
si te.  So to calculate formula units in the octahedral  si te, we divide the number of moles of Na, K, and
Ca by the sum of moles of Na, K, and Ca.   To cal -
culate formula units in the tetrahedral  si te, we
divide the number of moles of Al  and Si  by the
sum of moles of Al  and Si  and multiply by 4, since
there are 4 ions in th is si te.  Since the number of
oxygens is constant, we can refer to these quanti -
ties as the moles per 8 oxygens.  The table below
shows the results of these calculations.

The activi ty of albi te is equal  to the mole
fraction of Na, 0.07; the activi ty of anorth i te is
0.93.

Plagioclase Analysis

Oxide Wt. percent

SiO2 44.35
Al 2O3 34.85
CaO 18.63
Na2O 0.79
K2O 0.05

Cation Formula Units

Mol. wt. moles moles per
oxide cation 8 oxygens

Si 60.06 0.7385 2.077
Al 101.96 0.6836 1.923
Ca 56.08 0.3322 0.926
Na 61.98 0.0255 0.071
K 94.2 0.0011 0.003
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∆Gr

o = –RT ln K 3.98

At this point, it is worth saying some more about 'standard states'.  We mentioned that one is free
to choose a standard state, but there are pitfalls.  In general, there are two kinds of standard states,
fixed pressure-temperature standard states and variable P-T standard states.  If you chose a fixed
temperature standard state, then equation 3.98 is only valid at that standard-state temperature.  I f
you chose a variable-temperature standard state, then 3.98 is valid for all temperatures, but ÆG¡ is
then a function of temperature.  The same goes for pressure.

The Law of Mass Action

LetÕs attempt to understand the implications of equation 3.97.  Consider the dissociation of carbonic
acid, an important geological reaction:

H2CO3 = HCO 3
– + H+

For this particular case, equation 3.97 is expressed as:
 

K =
aHCO3

–aH+

aH2CO3

The right side of the equation is a quotient, the product of the activities of the products divided by

Example 3.6. Manipulating Reactions and Equilibrium Constant Expressions
Often we encounter a reaction for which we have no value of the equilibrium constant.  In many

cases, however, we can derive an equilibrium constant by considering the reaction of interest to be the
algrebraic sum of several reactions for which we do have equilibrium constant values.  For example, the
concentration of carbonate ion is often much lower than that of the bicarbonate ion. In such cases, it is
more convenient to write the reaction for the dissolution of calcite as:

CaCO3 + H2O ® Ca2+ + HCO 3
– + OH– 3.99

Given the following equilibrium constants, what is the equilibrium constant expression for the above
reaction?

 
K 2 =

a H+ a CO3
2-

a HCO3
–

 
Kcal =

aCa2+ aCO3
2-

aCaCO3

 
 

KH2O =
aH+ aOH–

aH2O

Answer: Reaction 3.99 can be written as the algebraic sum of three reactions:
+ CaCO3 ® Ca2++ CO 3

2−

+ H2O ® H+ + OH–

– HCO 3
– ® H+ + CO 3

2−

  CaCO3 – HCO3
– + H2O ® Ca2+ + H+ – H+ + OH–

The initial inclination might be to think that if we can sum the reactions, the equilibrium constant of
the resulting reaction is the sum the equilibrium constants of the components ones.  However, this is not
the case.  Whereas we sum the reactions, we take the product of the equilibrium constants.  Thus our new
equilibrium constant is:

K = 
Kcal × KH2O

K2
 

For several reasons (chief among them is that equilibrium constants can be very large or very small
numbers), it is often more convenient to work with the log of the equilibrium constant.  A commonly used
notation is pK.  pK is the negative logrithm (base 10) of the corresponding equilibrium constant (note
this notation is analogous to that used for pH).  The pKÕs sum and our equilibrium constant expression is:

pK = pKcal – pKH2O – K2
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the product of the activities of the reactants, and is called the reaction quotient.  At equilibrium, the
reaction quotient is equal to the equilibrium constant.  The equilibrium constant therefore allows us to
predict the relative amounts of products and reactants that will be present when a system reaches
equilibrium.

Suppose now that we prepare a beaker of carbonic acid solution; itÕs not hard to prepare: we just a l -
low pure water to equilibrate with the atmosphere.  LetÕs simplify things by assuming that this is an
ideal solution.  This allows us to replace activities with concentrations (the concentration units will
dictate how we define the equilibrium constant; see below).  When the solution has reached equilib-
rium, just enough carbonic acid will have dissociated so that the reaction quotient will be equal to the
equilibrium constant.  Now letÕs add some H+ ions, perhaps by adding a little HCl. The value the re-
action quotient increases above that of the equilibrium constant and the system is no longer in equilib-
rium.  Systems will always respond to disturbances by moving toward equilibrium (how fast they re-
spond is another matter, and one that we will address in Chapter 5).   The system will respond by ad-
justing the concentrations of the 3 species until equilibrium is again achieved, in this case, hydrogen
and bicarbonate ions will combine to form carbonic acid until the reaction quotient again equals the
equilibrium constant.  We can also see that had we reduced the number of hydrogen ions in the solu-
tion (perhaps by adding a base), the reaction would have been driven the other way: i.e., hydrogen
ions would be produced by dissociation.  Equation 3.97 is known as the Law of Mass Action, which we
can state more generally as: changing the concentration of one species to a system undergoing reaction
will cause the reaction to be driven in a direction that minimizes that change.

Le Chatelier’s Principle

We can generalize this principle to the effects of temperature and pressure as well.  Recall that:

  ∂∆Gr

∂P
T

= ∆Vr (2.154) and 
  ∂∆Gr

∂T
P

= –∆Sr (2.155)

and that systems respond to changes imposed on them by minimizing G. Thus a system undergoing re-
action will respond to an increase in pressure by minimizing volume.  Similarly, it will respond to an
increase in temperature by maximizing entropy.  The reaction ice → water illustrates this.  If the
pressure is increased on a system containing  water and ice, the equilibrium will shift to favor the
phase with the least volume, which is water (recall that water is unusual in that the liquid has a
smaller molar volume than the solid).  If the temperature of that system is increased, the phase with
the greatest molar entropy is favored, which is also water.

Another way of looking at the effect of temperature is to recall that:

S  
Q

T  

Combining this with equation 2.155, we can see that if a reaction A + B → C + D generates heat, then
increasing the temperature will retard formation of the products, i.e., the reactants will be favored.

A general statement that encompasses both the law of mass action and the effects we have just dis-
cussed is then:

When perturbed, a system reacts to minimize the effect of the perturbation.

This is known as Le ChatelierÕs Principle.

KD Values, Apparent Equilibrium Constants, and the Solubility Product

It is often difficult to determine activities for phase components or species, and therefore it is more
convenient to work with concentrations.  We can define a new 'constant', the distribution coefficient,
KD, as:    KD = Xi

νi∏
i

3.100
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KD is related to the equilibrium constant K as:
  

KD =
Keq

Kλ

3.101

where Kλ is simply the ratio of activity coefficients:
   KD = λi

ν
i∏

i

3.102

Distribution coefficients are functions of temperature and pressure, as are the equilibrium constants,
though the dependence of the two may differ.  The difference is that KD values are also functions of
composition.

An alternative to the distribution coefficient is the apparent equilibrium constant, which we de-
fine as:

   Kapp = mi
ν

i∏
i

3.103
  

Kapp =
Keq

Kλ

3.104

The difference between the apparent equilibrium constant and the distribution coefficient is that we
have defined the latter in terms of molality and the former in terms of mole fraction.  Igneous geo-
chemists tend to use the distribution coefficient, aqueous geochemists the apparent equilibrium con-
stant.

Another special form of the equilibrium constant is the solubility product.  Consider the dissolu-
tion of NaCl in water.  The equilibrium constant is:

 
K =

aNa(aq)
+ aCl(aq)

–

aNaCl(s)
where aq denotes the dissolved ion and s denotes solid.  Because the activity of NaCl in pure sodium
chloride solid is 1, this reduces to:

 K = aNa(aq)
+ aCl(aq)

– = Ksp
3.105

where Ksp is called the solubility product.  You should note that it is generally the case in dissolution
reactions such as this that we take the denominator, i.e., the activity of the solid, to be 1.

Henry’s Law and Gas Solubilities

Consider a liquid, water for example, in equilibrium with a gas, the atmosphere for example.  Ear-
lier in this chapter, we found that the partial pressure of component i in the gas could be related to
the concentration of a component i in the liquid by HenryÕs Law:

  Pi = hXi (3.10)
where h is HenryÕs Law constant.  We can rearrange this as:

Example 3.7: Using the Solubility Product.
The apparent (molar) solubility product of fluorite (CaF2) at 25û C is 3.9 × 10-11.  What is the con-

centration of Ca2+ ion in groundwater containing 0.1 mM of FÐ in equilibrium with fluorite?
Answer:  Expressing equation 3.97 for this case we have:

  
Ksp-Fl =

Ca2+ ⋅ F– 2

CaF2
= [Ca2+]⋅[F–]2

We take the activity of CaF2 as 1.  Rearranging and substituting in values, we have:
  

[Ca 2+]=
K sp-Fl

[F –]2 =
3.9×10 –11

[0.1×10 -3]2 =
3.9×10 –11

1×10 –8 = 3.9×10 –3M = 3.9 mM
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h =

Pi

Xi

3.106

Notice that this equation is analogous in
form the the equilibrium constant expression
(3.97), except that we have used a partial
pressure in place of one of the concentrations.
A HenryÕs Law constant is thus a form of
equilibrium constant used for gas solubility:
it relates the equilibrium concentration of a
substance in a liquid solution to that compo-
nentÕs partial pressure in a gas.

Temperature Dependence of
Equilibrium Constant

Since   G° = H° – T S°  and  Go
r   = –

RT ln K, it follows that in the standard
state, the equilibrium constant is related to
enthalpy and entropy change of reaction as:

 

ln K = –
∆Hr

o

RT
+

∆Sr
o

R
3.107

Equation 3.107 allows us to calculate an
equilibrium constant from fundamental ther-
modynamic data.  Conversely, we can esti-
mate values for ÆSû and ÆHû from the equi-
librium constant, which is readily calculated
if we know the activities of reactants and
products.  Equation 3.107 has the form:

ln K = 
a
T  + b

where a and b are ÆHû/R and ÆSû/R respectively.  If we can assume that ÆH and ÆS are constant over
some temperature range (this is likely to be the case provided the temperature interval is small),
then a plot of ln K vs. 1/T will have a slope of ÆHû/R and an intercept of ÆSû/R.  Thus measurements
of ln K made over a range of temperature and plotted vs. 1/T provide estimates of ÆHû and ÆSû.  Even
if ÆH and ÆS are not constant, they can be estimated from the instantaneous slope and intercept of a
curve of ln K plotted against 1/T.  This is illustrated in Figure 3.17, which shows measurements of the
solubility constant for barite (BaSO4) plotted in this fashion (though in this case the log10 rather
than natural logarithm is used).  From changes of ÆH and ÆS with changing temperature and knowing
the heat capacity of barite, we can also estimate heat capacities of the Ba2+ and SO 4

2− ions, which
would obviously be difficult to measure directly.  We can, of course, also calculate ÆG directly from
equation 3.98.  Thus a series of measurements of the equilibrium constant for simple systems allows us
deduce the fundamental thermodynamic data needed to predict equilibrium in more complex systems.

Taking the derivative with respect to temperature of both sides of equation 3.107, we have:
   

d ln K
d T

=
∆Hr

o

RT2
3.108

This equation is known as the vanÕt Hoff Equation.   
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Figure 3.17.  Log of the solubility constant of barite
plotted against the inverse of temperature.  The slope
of a tangent to the curve is equal to ÐÆH/R.  The inter-
cept of the tangent (which occurs at 1/T = 0 and is off
the plot) is equal to ÆS/R.  After Blount (1977).
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Pressure Dependence of Equilibrium Constant

Since
∂
∂
∆





= ∆G
P

V
T

r and  ∆Gr
o = – RT ln K   then

 
∂ ln K

∂P T
= –

∆Vr
o

RT
3.109

or:
 

ln KP2
– lnKP1

= –
∆Vr

RT
P2 – P1

if ÆV
r
 does not depend on pressure.  This assumption will be pretty good for solids because their com-

pressibilities are very low, but slightly less satisfactory for reactions involving liquids (such as dis-
solution), because they are more compressible.  This assumption will be essentially totally invalid for
reactions involving gases, because their volumes are highly pressure dependent.

Practical Approach to Electrolyte Equilibrium
With the equilibrium constant  now in our geochemical toolbox, we have the tools necessary to roll

up our sleeves and get to work on some real geochemical problems.  Even disregarding non-ideal be-
havior, electrolyte solutions, and Òreal worldÓ or geological ones in particular, often have many com-
ponents and can be extremely complex.  Predicting their equilibrium state can therefore be difficult.
There are, however, a few rules for approaching problems of electrolyte solutions that, when prop-
erly employed, make the task much more tractable.

Chosing Components and Species

We emphasized at the beginning of the chapter the importance of chosing the components in a sys-
tem.  How well we chose components will make a difference in how easily we can solve a given prob-

Example 3.8. Calculating Equilibrium Constants and Equilibrium Concentrations
The hydration of ol ivine to form chrysol i te (a  serpentine mineral ) may represented in a pure Mg
system as:

H2O + 2H+ + 2Mg2SiO4 ® Mg3Si2O5(OH)4 +Mg2+

If th is reaction control led the concentration of Mg2+ of
the metamorphic fluid, what would be the activi ty of
that fluid having a pH of 3.5 at 300û C?

Answer: Helgeson (1967) gives the thermodynamic
data shown in the adjacent table for the reactants at
300¡ C.  From these data, we use HessÕs Law to calculate
ÆHr and ÆSr as -231.38 kJ and -253.01 J/K respectively.
The equi l ibrium constant for the reaction may be

calculated as:
  K = exp –

∆H r
o

RT +
∆S r

o

R = exp –-231.38 × 10 3

8.134 × 573
+ 253.01

8.314
= 7.53 × 10 7

The equi l ibrium constant for th is reaction can be wri tten as:
 K =

a Mg2+a Cr

a H+2 a Fo
2 a H 2O

    which  reduces to    K =
a Mg2+

a H+2   i f we take the activi ties of water, chrysol i te,

and forsteri te as 1.  Since pH = - log aH+ , we may rearrange and obtain the activi ty of the
magnesium ion as:

  a Mg2+ = K⋅a H+2 = 7.53 × 10 7×10 –4×2 = 7.53 × 10 -1

Species ÆHû kJ Sû J/K

Mg3Si 2O5(OH)4 -4272.87 434.84
Mg2+ -366.46 109.05
H+ 44.87 106.68
Mg2SiO4 -2132.75 186.02
H2O -232.19 211.50
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lem.  Morel and Hering (1993) suggest these rules for chosing components and species in aqueous sys-
tems:

1. All species should be expressable as stoichiometric functions of the components, the stoichiome-
try being defined by chemical reactions.

2. Each species has a unique stoichiometric expression as a function of the components.
3. H2O should always be chosen as a component.
4. H+ should always be chosen as a component.

H+ activity, or pH, is very often the critical variable, also called the Òmaster variableÓ , in problems
in natural waters.  In addition, recall that we define the free energy of formation of H+ as 0.  For these
reasons, it is both convenient and important that H+ be chosen as a component.

Mass Balance

This constraint, also sometimes called mole balance, is a very simple one, and as such it is easily
overlooked.  When a salt is dissolved in water, the anion and cation are added in stoichiometric pro-
portions.  If the dissolution of the salt is the only source of these ions in the solution, then for a salt of
composition Cν+AνÐ we may write:

ν–[C] = ν+[A] 3.110
Thus, for example, for a solution formed by dissolution of CaCl2 in water the concentration of ClÐ

ion will be twice that of the Ca2+ ion.  Even if CaCl2 is not the only source of this ions in solution, its
congruent dissolution allows us to write the mass balance constraint in the form of a differential equa-
tion:

Cl–

Ca2+   = 2

which just says that CaCl2 dissolution adds two ClÐ ions to solution for every  Ca2+ ion added.
By carefully chosing components and boundaries of our system, we can often write conservation

equations for components.  For example, suppose we have a liter of water containing dissolved CO2 in
equilibrium with calcite (for example, groundwater in limestone).  In some circumstances, we may
want to chose our system as the water plus the limestone, in which case we may consider Ca conserved
and write:

ΣCa = Ca aq
2++ CaCO3s

where CaCO3s is calcite (limestone) and Ca aq
2+ is aqueous calcium ion.  We may want to avoid chosing

carbonate as a component and chose carbon instead, since the carbonate ion is not conserved because of
association and dissociation reactions such as:

CO 3
2−+ H+ ® HCO 3

–

Chosing carbon as a component has the disadvantage that some carbon will be present as organic com-
pounds, which we may not wish to consider.  A wiser choice is to define CO2 as a component.  Total
CO2 would then include all carbonate species as well as CO2 (very often, total CO2 is expressed in-
stead as total carbonate).  The conservation equation for total CO2 for our system would be:

ΣCO2 = CaCO3s + CO2 + H2CO3 + HCO 3
– + CO 3

2−

Here we see the importance of the distinction we made between components and species earlier in the
chapter.

Electrical Neutrality

There is an additional condition that electrolyte solutions must meet: electrical neutrality.  Thus
the sum of the positive charges in solutions must equal the sum of the negative ones, or:  mizi = 0ΣΣ

i
3.111
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While this presents some experimental obstacles, for example we cannot add only Na+ ion to an aque-
ous solution while holding other compositional parameters constant, it also allows placement of an
addition mathematical constraint on the solution.  It is often convenient to rearrange equ. 3.111 so as to
place anions and cations on different sides of the equation:

m z m zi i
i

n n
n

+ + − −=∑ ∑ 3.112

As an example, consider an natural water in equilibrium with atmospheric CO2 and containing no
other species.  The charge balance equation in this case is:

[H+] = [OH–] + [HCO 3
− ] + 2[CO 3

2−]
As example 3.9 illustrates, the electrical neutrality constraint can prove extremely useful.

Equilibrium Constant Expressions

For each chemical reaction in our system, we can write one version of equation 3.97.  This allows us
to relate the equilibrium concentrations of the species undergoing reaction in our system to one an-
other.  

Solution of aqueous equilibria problems often hinge on the degree to which we can simplify the
problem by  minimizing the number of equilibrium constant expressions we must solve.  For example,
H2SO4 will be completely dissociated in all but the most acidic natural waters, so we need not deal
with equilibrium between H+, SO 4

2− , HSO 4
– , and H2SO4 and need not consider the two latter in our

list of species.  Similarly, though many natural waters contain Na+ and ClÐ, NaCl will precipitate
only from concentrated brines, so we generally need not consider equilibrium between NaCl, Na+, and
ClÐ.

Carbonate is a somewhat different matter.  Over the range of compositions of natural waters,

Example 3.9. Determining the pH of Rain Water from its Composition
Determine the pH of the two samples of rain in the adjacent table.  Assume that sul furic and

nitric acid are ful ly dissociated and that the ions in the table, along with  H+ and OHÐ are the only
ones present.

Answer: This problem is much simpler than i t might fi rst ap-
pear.  Given the conditions stated in the problem, there are no reac-
tions between these species that we need to concern ourselves with .
To solve the problem, we observe that th is solution must be
electrical ly neutral : any difference in the sum of cations and ions
must be due to the one or both  of the two species not l i sted: OHÐ and
H+.

We start by making an ini tial  guess that the rain is acidic and
that the concentration of H+ wil l  be much h igher than that of OHÐ,
and that we can therefore neglect the latter (weÕl l  want to veri fy
th is assumption when we have obtained a solution).  The rest i s
straightforward.  We sum the cations and anions and find that
anions exceed cations in both  cases: the di fference is equal  to the concentration of H+.  Taking the log
of the concentration (having fi rst converted concentrations to M from µM by multiplying by 10-6) we
obtain a pH of 4.4 for the fi rst sample and 3.19 for the second.

Now we need to check our simpli fying assumption that
we could neglect OHÐ.  The equi l ibrium between OHÐ and
H+ is given by:

K = [H+][OH–] = 10–14

From th is we compute [OHÐ] as 10-10 in the fi rst case and
10-11 in the second.  Including these would not change the
anion sum significantly, so our assumption was justi fied.

Analysis of Rain Water
Rain 1
(µM)

Rain 2
(µM)

Na 9 89
Mg 4 16
K 5 9
Ca 8 37
Cl 17 101
NO3 10 500
SO4 18 228

Charge Balance for Rainwater
Rain 1 Rain 2

Σ cations 25 151

Σ anions 34 163
Æ 40 647
pH 4.40 3.19
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H2CO3, HCO 3
– , and CO 3

2− may all be present.  In most cases, however, one of these forms will domi-
nate and the concentrations of the remaining ones will be an order of magnitude or more lower than
that of the dominant one.  In some cases, two of the above species may have comparible concentrations
and will be have to consider equilibrium between them, but it is rarely necessary to consider equilib-
rium between all three.  Thus at most we will have to consider equilibrium between H2CO3 and
HCO 3

– , or HCO 3
– and CO 3

2− , and we can safely ignore the existance of the remaining species.  Of
course, a successful solution of problems involving carbonate equilibria requires correctly deciding
which reactions to ignore.  We will discuss carbonate equilibrium in greater detail in Chapter 6.

Oxidation and Reduction
An important geochemical variable that we have not yet considered is the oxidation state of a

system.  Many elements exist in nature in more than one valence state.  Because of their abundance,
iron and carbon are the most important of these.  Other elements, including transition metals such as
Ti, Mn, Cr, Ce, Eu, and U, and non-metals such as N, S, and As are found in more than one valence state
in nature.  The valence state of an element can significantly affect its geochemical behavior.  For ex-
ample, U is quite soluble in water in its oxidized state, U6+, but is much less soluble in its reduced
state, U4+.  Many, if not all, uranium deposits have formed when an oxidized, U-bearing solution was
reduced.  Iron is reasonably soluble in reduced form, Fe2+, but much less soluble in oxidized form, Fe3+.
The same is true of manganese.  Thus iron is leached from rocks by reduced hydrothermal fluids and
precipitated when these fluids mix with oxidized seawater.  Manganese will be immobile at sedi-
ment-water interface yet will dissolve into sediment pore waters, and hence become mobile, if condi-
tions become reducing at depth.  Eu2+Ê in magmas substitutes readily for Ca in plagioclase, whereas
Eu3+ does not.  The mobility of pollutants, particularly toxic metals, will depend strongly on the
whether the environment is reducing or oxidizing.  Thus the oxidation state of a system is an impor-
tant geochemical variable.

The valence number of an element is defined as the electrical charge an atom would acquire if i t
formed ions in solution.  For strongly electronegative and electropositive elements that form domi-
nantly ionic bonds, valence number corresponds to the actual state of the element in ionic form.  How-
ever, for elements that predominantly or exclusively form covalent bonds, valence state is a some-
what hypothetical concept.  Carbon, for example, is never present in solution as a monatomic ion.  Be-

Example 3.10: Soil Organic Acid
Consider soil water with a pH of 7 containing a weak organic acid, which we will designate HA,

at a concentration of 1 × 10-4 M.  If the apparent dissociation constant of the acid is 10-4.5, what fraction
of the acid is dissociated?

Answer: We have two unknowns: the concentration of the dissociated and undissociated acid and
we have two equations: the equilibrium constant expression for dissociation, and mass balance equa-
tion.  WeÕll have to solve the two simultaneously to obtain the answer.  Our two equations are:

 
Kdis =

[H+][A–]
[HA]

  = 10-4.5   ΣHA = [HA] + [A–]

Solving the dissociation constant expression for [AÐ] we have:
 

[A–] =
[HA]Kdis

[H+]
Then solving the conservation equation for [HA] and substituting, we have

  
[A–] =

ΣHA – [A–] Kdis

[H+]
Setting H+ to 10-7 and ΣHA to 10-4, we calculate [AÐ] as 3.16 × 10-5 M, so 31.6% of the acid is dissoci-
ated.
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cause of this, assignment of valence number can be a bit ambiguous.  A few simple conventions guide as-
signment of valence number:

¥ The valence number of all elements in pure form is 0.
¥ The sum of valence numbers assigned to atoms in molecules or complex species must equal the ac-

tual charge on the species.
¥ The valence number of hydrogen is +1, except in metal hydrides, when it is -1.
¥ The valence number of oxygen is -2 except in peroxides, when it is -1.
The valence state in which an element will be present in a system is governed by the availability

of electrons.   Oxidation-reduction (redox) reactions involve the transfer of electrons and the resultant
change in valence.  Oxidation is the loss of electrons, reduction is the gain of electronsà.  An example is
the oxidation of magnetite (which consists of 1 Fe2+ and 2 Fe3+) to hematite:

  2Fe 3O4 +
1
2
O2 ® 3Fe 2O3

The Fe2+ in magnetite looses an electron in this reaction and thereby oxidized; conversely oxygen gains
an electron and is thereby reduced.

We can divide the elements into electron donors and electron acceptors; this division is closely re-
lated to electronegativity as you might expect.  Electron acceptors are electronegative; electron donors
are electropositive.  Metals in 0 valence state are electron donors, non-metals in 0 valence state are
usually electron acceptors.  Some elements, such as carbon and sulfur, can be either electron donors or
receptors.  Oxygen is the most common electron acceptor, hence the term oxidation.  It is nevertheless
important to remember that oxidation and reduction may take place in the absence of oxygen.

A reduced system is one in which the availability of electrons is high, due to an excess of electron
donors over electron acceptors.  In such a system, metals will be in a low valence state, e.g., Fe2+.  Con-
versely, when the availability of electrons is low, due to an abundance of electron acceptors, a system
is said to be oxidized.  Since it is the most common electron acceptor, the abundance of oxygen usually
controls the oxidation state of a system, but this need not be the case.

To predict the equilibrium oxidation state of a system we need a means of characterizing the
availability of electrons, and the valence state of elements as a function of that availability.  Low-
temperature geochemists and high-temperature geochemists do this in different ways.  The former
use electrochemical potential while the latter use oxygen fugacity.  We will consider both.

Redox in Aqueous Solutions

The simplest form of the chemical equation for the reduction of ferric iron would be:
  Feaq
3+ + e– ® Feaq

2+ 3.113
where the subscript aq denotes the aqueous species.  This form suggests that the energy involved
might be most conveniently measured in an electrochemical cell.

The Daniell cell pictured in Figure 3.18 can be used to measure the energy involved in the exchange
of electrons between elements, for example, zinc and copper:

  Zn s + Cu aq
2+ ® Zn aq

2+
+ Cu s

3.114

where the subscript s denotes the solid.  Such a cell provides a measure of the relative  preference of
Zn and Cu for electrons.  In practice, such measurements are made by applying a voltage to the system
that is just sufficient to halt the flow of electrons from the zinc plate to the copper one.  What is actu-
ally measured then is a potential energy, denoted E, and referred to as the electrode potential, or
simply the potential of the reaction.

If we could measure the potential of two separate half-cell reactions:

                                                
à A useful mnemonic to remember this is LEO the lions says GRR! (Loss Equals Oxidation, Gain Refers to
Reduction.)  Silly, perhaps, but effective.  Try it!
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Zn s

® Zn aq
2+

+ 2e –    

  
Cu s

® Cu aq
2+

+ 2e –   

we could determine the energy gain/loss in the
transfer of an electron from an individual element.
Unfortunately, such measurements are not possible
(nor would these reactions occur in the natural en-
vironment: electrons are not given up except to an-
other element or species*).  This requires the
establishment of an arbitrary reference value.
Once such a reference value is established, the
potential involved in reactions such as 3.84 can be
established.

Hydrogen scale potential, EH

The established convention is to measure poten-
tials in a standard hydrogen electrode cell (a t
standard temperature and pressure).  The cell con-
sists on one side of a platinum plate coated with
fine Pt powder that is surrounded by H2 gas main-
tained at a partial pressure of 1 atm and emerged
in a solution of unit H+  activity.  The other side
consists of the electrode and solution under inves-
tigation.  A potential of 0 is assigned to the hal f -
cell reaction:

  1

2
H 2(g)

® H aq
+

+ e
– 3.115

where the subscript g denotes the gas phase. The
potential measured for the entire reaction is then
assigned to the half-cell reaction of interest.  Thus
for example, the potential of the reaction:

  Zn aq
2+ + H 2(g) ® Zn s + 2H+

is Ð0.763 V.  This value is assigned to the reaction:
  Zn aq

2+ + 2e – ® Zn s 3.116

and called the hydrogen scale potential, or EH, of this reaction.  Thus the EH for the reduction of Zn+2

to Zn0 is -0.763 V.  The hydrogen scale potentials of a few half-cell reactions are listed in Table 3.3.
The sign convention for EH is that the sign of the potential is positive when the reaction proceeds from
left to right (i.e., from reactants to products).  Thus if a reaction has positive EH, the metal ion will be
reduced by hydrogen gas to the metal.  If a reaction has negative EH, the metal will be oxidized to the
ion and H+ reduced.  The standard state potentials (298 K, 0.1 MPa) of more complex reactions can be
can be predicted by algebraic combinations of the reactions and potentials in Table 3.3.

The half cell reactions in Table 3.3 are arranged in order increasing E¡.  Thus a species on the prod-
uct (right) side of a given reaction will reduce (give up electrons to) the species on the reactant side in

                                                
* Ionization reactions, where free electrons are formed, do occur in nature at very high temperatures.
They occur, for example, in stars or other very energetic environments in the universe.
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Figure 3.18. Electrode reactions in the Daniell
Cell.
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all reactions listed below it.  Thus in
the Daniell Cell reaction in Figure 3.17,
Zn metal will reduce Cu2+ in solution.
Zn may thus be said to be a stronger re-
ducing agent than Cu.

Electrochemical energy is another
form of free energy and can be related to
the Gibbs Free Energy of reaction as:

G = -zF E  3.117

and G° = –zFE° 3.118
where z is the number of electrons per
mole exchanged (e.g., 2 in the reduction
of zinc) and F is the Faraday constant
(F = 96,485 coulombs;  1 joule = 1 volt-
coulomb).  The free energy of formation
of a pure element is 0 (by convention).
Thus, the ÆG in a reaction that is oppo-
site one such as 3.116, i.e.:

 Zn(s) ® Zn2+ + 2e–

is the free energy of formation of the
ion from the pure element. From equ.
3.117 we can calculate the ÆG for the
reduction of zinc as 147.24ÊkJ/mol.  The
free energy of formation of Zn2+  would
be Ð147.24 kJ/mol.   Given the free en-
ergy of formation of an ion, we can also
use 3.117 to calculate the hydrogen
scale potential.

Since
  ∆G = ∆G° + RT ln Π a i

ν i 3.119
we can substitute 3.117 and 3.118 into
3.119 and also write

   
E = E° – RT

zF
ln ai

ννiΠΠ 3.120

Equation 3.120 is known as the Nernst
Equationà.  At 298K and 0.1 MPa it re-
duces to:

  
E = E° –

0.0592
z

log Πai
νi 3.121

We can deduce the meaning of this relationship from the relationship between ÆG and E in equ. 3.117.
At equilibrium ÆG is zero.  Thus in equation 3.120, activities will adjust themselves such that E is 0.

                                                
à Named for Walther Nernst (1864-1941).  Nernst was born in Briesau, Prussia (now in Poland) and com-
pleted a PhD at the University of W�rzburg in 1887.  Nernst made many contributions to thermodynam-
ics and kinetics, including an early version of the third law.  He was awarded the Nobel Prize in 1920.

Table 3.3. EH° and pε° for some Half-cell Reactions
Half Cell Reaction EH°

(V)
pε°

Li+ + eÐ ® Li -3.05 Ð51.58
Ca2+ + 2e- ® Ca -2.93 Ð49.55
Th4+ + 4e- ® Th -1.83 Ð30.95

U+4 +4e- ® U -1.38 Ð23.34

Mn2+ +2e- ® Mn -1.18 Ð19.95

Zn2+ + 2e- ® Zn -0.76 Ð12.85
Cr3+ +3e- ® Cr -0.74 Ð12.51

Fe2+ + 2e- ® Fe -0.44 Ð7.44
Eu3+ + e– ® Eu2+ -0.36 -6.08

Pb2+  + 2e- ® Pb -0.13 Ð2.2

CO2(g) + 4H+  + 4e- ® CH2O*+2H2O -0.71 Ð1.2

2H+  + 2e- ® H2(g)
0 0

N2(g) + 6H+  + 6e- ® 2NH3
0.093 1.58

Cu2+ + 2e- ® Cu 0.34 5.75

UO 2
2+  + 2eÐ ® UO2

0.41 6.85

S + 2e- ® S2- 0.44 7.44

Cu+ + e- ® Cu 0.52 8.79

Fe3+ + e- ® Fe2+ 0.77 13.02

NO 3
– + 2H+ + e Ð  ® NO2 + H2O 0.80 13.53

Ag+ + eÐ ® Ag 0.80 13.53

Hg2+ + 2e- ® Hg 0.85 14.37

MnO2(s) + 4H+ + 2eÐ ® Mn2+ + 2H2O 1.23 20.8

O2 + 4H+ + 4e- ® 2H2O 1.23 20.8

MnOÐ
4  + 8H+ + 5e– ® Mn2+ + 4H2O

1.51 25.53

Au+ + eÐ ® Au 1.69 28.58

Ce4+ + eÐ ® Ce3+ 1.72 29.05

Pt+ +e- ® Pt 2.64 44.64

*CH2O refers to carbohyrate, the basic product of photosynthesis.
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 Alternative Representation of Redox State: pε

Consider again the reaction:   Feaq
3+ +e– ® Feaq

2+ (3.113)

If we were to express the equilibrium constant for this reaction, we would write:

K = 
aFe2+

aFe3+ ae–

Thus we might find it convenient to define an activity for the electron.  For this reason, chemists have
defined an analogous parameter to pH, called pε. pε is the negative log of the activity of electrons in
solution:

  
pεε ≡ –log ae– 3.123

The log of the equilibrium constant  for 3.113 may then be written as:

log K = logaFe2+

aFe3+
 + pε

upon rearranging we have:
   

pε = log K - log
a Fe2+

a Fe3+
3.124

When the activities of reactants and products are in their standard states, i.e., a = 1, then

pε° = log K    or, in general         pε° = 
1
n  log K 3.125

pε¡ values are empirically determined and may be found in various tables.  Table 3.3 lists values for
some of the more important reactions.  For any state other than the standard state, pε is related to
the standard state pε by: 

  
pε = pε° – log

aFe2+

aFe3+
3.126

pε and EH are related by the following equation:

Example 3.11: Calculating the EH of Net Reactions
We can calculate EH values for reactions not listed in Table 3.3 by algebraic combinations of the re-

actions and potentials that are listed.  There is, however, a ÒcatchÓ.  LetÕs see how this works.
Calculate the EH for the reaction:

Fe3+ + 3e– ® Fe
Answer:  This reaction is the algebraic sum of two reactions listed in Table 3.2:

Fe3+ + e– ® Fe+2

 Fe2+ + 2e– ® Fe
Since the reactions sum, we might assume that we can simply sum the EH values to obtain the EH of the
net reaction.  Doing so, we obtain an EH of 0.33 V.  However, the true EH of this reaction is Ð0.037 V .
What have we done wrong?

We have neglected to take into consideration the number of electrons exchanged.  In the algebraic
combination of EH values, we need to multiply the EH for each component reaction by the number of
electrons exchanged.  We then divide the sum of these values by number of electrons exchanged in the
net reaction to obtain the EH of the net reaction, i.e.,

  EH (net) = 1
znet

ziEH iΣ
i

 3.122

where the sum is over the component reactions i.  Looking at equation 3.117, we can see why this is the
case.  By HessÕs Law, the ÆG of the net reaction must be the simple sum of the component reaction ÆGÕs,
but EH values are obtained by multiplying ÆG by z.  Equation 3.118 is derived by combining equ. 3.117
and HessÕs Law.  Using equ. 3.118, we obtain the correct EH of -0.037 V.
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pε =

F EH
2.303RT

3.127

(the factor 2.303 arises from the switch from natural log units to base 10 log units).
In defining electron activity and representing it in log units, there is a clear analogy between pε

and pH.  However, the analogy is purely mathematical, and not physical.  Natural waters do not
contain significant concentrations of free electrons.  Also, though a system at equilibrium can have
only one value for pε, just as it will have only one value of pH, redox equilibrium is often not achieved
in natural waters.  The pε of a natural system is therefore often difficult to determine.  Thus pε is a
hypothetical unit, defined for convenience of incorporating a representation of redox state that fits
readily into established thermodynamic constructs such as the equilibrium constant.  In this sense,
equation 3.124 provides a more accurate definition of pε than does equ. 3.123.

The greater the pε, the greater the tendency of species to lose their transferable, or valence, elec-
trons.  In a qualitative way we can think of the negative of pε as a measure of the availability of
electrons.  pε can be related in a general way to the relative abundance of electron acceptors.  When an
electron acceptor, such as oxygen, is abundant relative to the abundance of electron donors, the pε is
high and electron donors will be in electron-poor valence states, e.g., Mn4+ instead of Mn2+.  pε, and EH,
are particularly useful concepts when combined with pH to produce diagrams representing the stabil-
ity fields of various species.  We will briefly consider how these are constructed.

pε — pH Diagrams

pε Ð pH and EHÐpH diagrams are commonly used tools of aqueous geochemistry, and it is important
to become familiar with them.  An example, the pεÐpH diagram for iron, is shown in Figure 3.19.  pεÐ
pH diagrams look much like phase diagrams, and indeed there are many similarities.  There are,
however, some important differences.  First, labeled regions do not represent conditions of stability
for phases, rather they show which species will be predominate under the pεÐpH conditions within
the regions.  Indeed, in Fig. 3.19 we consider only a single phase: an aqueous solution.  The bounded re-
gions are called predominance areas.   Second, species are stable beyond their region: boundaries rep-
resent the conditions under which the activities of species predominating in two adjoining fields are
equal.  However, since the plot is logarithmic, activities of species decrease rapidly beyond their
predominance areas.

More generally, a pε-pH diagram is a type of activity diagram, or predominance diagram, in
which the region of predominance of a species is represented as a function of activities of two or more
species or ratios of species.  We will meet variants of such diagrams in later chapters.

 LetÕs now see how Figure 3.19 can be constructed from basic chemical and thermodynamic data. We
will consider only a very simple Fe-bearing aqueous solution.   Thus our solution contains only species
of iron, the dissociation products of water and species formed by reactions between them.  Thermody-
namics allows us to calculate the predominance region for each species. To draw boundaries on this
plot, we will want to obtain equations in the form of pε = a + b × pH.  With an equation in this form, b
is a slope and a is an intercept on a pε-pH diagram.  Hence we will want to write all redox reactions
so that the contain eÐ and all acid-base reactions so that they contain H+.

In Fig. 3.19, we are only interested in the region where water is stable.  So to begin construction of
our diagram, we want to draw boundaries outlining the region of stability of water.  The upper limit
is the reduction of oxygen to water:

  1
2O2(g) + 2e – + 2H aq

+ ® H 2O

The equilibrium constant for this reaction is:
 

K =
aH2O

PO2

1/2ae–
2 aH+

2
3.128

Expressed in log form: log K = log aH2O – 
1
2
  log PO2 + 2 pe + 2 pH
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The value of log K is 41.56 (at 25¡ C and 0.1
MPa).  In the standard state, the activity
of water and partial pressure of oxygen are
1 so that 3.128  becomes:

pε = 20.78 - pH 3.129
Equation 3.129 plots on a pεÑpH diagram
as a straight line with a slope of -1 inter-
secting the vertical axis at 20.78.  This is
labelled as line ① on Figure 3.19.  

Similarly, the lower limit of the sta-
bility of water is the reduction of hydro-
gen:

  H aq
+ + e – ® 1

2H 2(g)

Because ÆGo
r  = 0 and log K = 0 (by conven-

tion), we have pε = ÐpH for this reaction,
i.e., a slope of 1 and intercept of 0.  This is
labelled as line ② on Figure 3.19.  Water is
stable between these 2 lines (region shown
in gray on Figure 3.19).

Now letÕs consider the stabilities of a
few simple aqueous iron species.  One of
the more important reactions is the hy-
drolysis of Fe3+:

Fe(aq)
3+ +H2O  →←  Fe(OH)aq

2+ + H+

The equilibrium constant for this reaction
is 0.0631.  The equilibrium constant expres-
sion is then:

 
log K = log

aFeOH
2+

aFe
3+

– pH = –2.2

Region boundaries on pεÐpH diagrams rep-
resent the conditions under which the activities of two species are equal. When the activities of
FeOH+2 and Fe+3 are equal the equation reduces to:

 -log K = pH = 2.2
Thus this equation defines the boundary between regions of predominance of Fe3+ and Fe(OH)2+.  The
reaction is independent of pε (no oxidation or reduction is involved), and it plots as a straight vertical
line pH = 2.2 (line ③ on Figure 3.19).  Boundaries between the successive hydrolysis products, e.g.,
Fe(OH) 3

o and Fe(OH) 4
– can be similarly drawn as vertical lines at the pH equal to their equilibrium

constants, and occur at pH values of 3.5, 7.3, and 8.8.  The boundary between Fe2+ and Fe(OH)Ð can be
similarly calculated and occurs at a pH of 9.5.

Now consider equilibrium between Fe+2 and Fe+3.  The pε¡ for this reaction is 13.0 (Table 3.3), hence
from equation 3.123 we have:

pε = 13.0 – log aFe2+

aFe3+

When the activities are equal, this equation reduces to
pε = 13.0 3.130

and therefore plots as a horizontal line at pε = 13 that intersects the FeOH+2ÊÑFe+3 line at an
invariant point at pH = 2.2 (line ④ on Figure 3.19).

The equilibrium between Fe+2, and Fe(OH)+2 is defined by the reaction:

2

Fe(OH)2+
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Figure 3.19. pεÑpH diagram showing predominance
regions for ferric and ferrous iron and their hydrolysis
products in aqueous solution at 25¡C and 1 bar.
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  Fe(OH)aq
2+ + e– + H+ ® Feaq

2+ + H2O
Two things are occurring in this reaction: reduction of ferric to ferrous iron, and reaction of H+ ions
with the OHÐ radical to form water.  Thus we can treat it as the algebraic sum of the two reactions we
just considered:

  Fe aq
3+ + e – ® Fe aq

2+   pε = 13.0
  Fe(OH)aq

2++ H+ ® Feaq
3+ + H2O  pH = 2.2

  Fe(OH)aq
2+ + e– + H+ ® Feaq

2+ + H2O pε + pH = 15.2

or: pε = 15.2 – pH
Thus this boundary has a slope of -1 and an intercept of 15.2 (line ⑤ on Figure 3.19).  Slopes and inter-
cepts of other reactions may be derived in a similar manner.

Now letÕs consider some solid phases of iron as well, specifically hematite (Fe2O3) and magnetite
(Fe3O4).  First, letÕs consider the oxidation of magnetite to hematite in the presence of an aqueous solu-
tion:

2Fe3O4 + H2O ® 3Fe2O3
  + 2H+ + 2e– 3.131

Assuming unit activity of all phases, the equilibrium constant expression for this reaction is:

  log K = –2 pH – 2 pε 3.132
From the free energy of formation of the
phases (ÆGf = -742.2 kJ/mol for hematite, -
1015.4 kJ/mol for magnetite, and -237.2
kJ/mol for water) we can calculate ÆGr using
HessÕs Law and the the equilibrium
constant using equ. 3.98.  Doing so, we find
log K = -5.77.  Rearranging equation 3.130
we have:

pε = 2.88 - pH
The boundary between hematite and mag-
netite will plot as a line with a slope of -1
and an intercept of 2.88.  Above this line,
i.e., at higher pε, hematite will be stable,
below that magnetite will be stable (Figure
3.20).  Thus this line is equivalent to a
phase boundary.

Next letÕs consider the dissolution of
magnetite to form Fe2+ ions.  The relevant
reaction is:

Fe3O4 + 8H+ + 2e– ® 3Fe2+ + 4H2O
The equilibrium constant for this reaction is
7 × 1029.  Written in log form:

  log K = 3log aFe
2+ + 8 pH + 2 pε = 29.85

or: pε = 14.92 – 4pH – 3
2
  logaFe2+

We have assumed that the activity of wa-
ter is 1 and that magnetite is pure and
therefore that its activity is 1.  If we again
assume unit activity of Fe2+, the predomi-

Fe2+
Hematite + Water
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Figure 3.20.  Stability regions for magnetite and
hematite in equilibrium with an iron-bearing aqueous
solution.  Thick lines are for a Feaq activity of 10-6, finer
lines for activities of 10-4 and 10Ð8.  The latter is dashed.
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nance area of magnetite would plot as the line:
pε = 14.92 – 4pH

i.e., a slope of Ð4 and interecept of 0.58.  However, such a high activity of Fe2+Ê would be highly un-
usual in a natural solution.  A more common activity for Fe2+  would be perhaps 10Ð6.  Adopting this
value for the activity of Fe2+, we can draw a line corresponding to the equation:

pε = 23.92 – 4pH
This line represents the conditions under which magnetite is in equilibrium with an activity of aque-
ous Fe2+ of 10-6.  For any other activity, the line will be shifted, as illustrated in Figure 3.20.  For
higher concentrations, the magnetite region will expand, for lower concentrations it will contract.

Now consider the equilibrium between hematite and Fe2+.  We can describe this with the reaction:
Fe2O3 + 6H+ + 2e– ® 2Fe2+ + 3H2O

The equilibrium constant (which may again be calculated from ÆGr) for this reaction is 23.79.
Expressed in log form:

  log K = 2log aFe
2+ + 6 pH + 2 pε = 23.79

Again using an activity of 10-6 for Fe2+, we can solve for pε as:
  pε = 11.9 – 3 pH – log aFe

2+

For an activity of Fe2+ of 10-6, this is a line with a slope of 3 and an intercept of 17.9.  This line repre-
sents the conditions under which hematite
is in equilibrium with aFe2+  = 10-6.  Again,
for any other activity, the line will be
shifted as shown in Figure 3.20.

Finally, equilibrium between hematite
and Fe3+ may be expressed as:

Fe2O3 + 6H+ ® 2Fe3+ + 3H2O
The equilibrium constant expression is:

 log K = 2log aFe
3+ + 6 pH = –3.93

For a Fe3+Ê activity of 10Ð6, this reduces to:
pH = 1.34

Since the reaction does not involve transfer
of electrons, this boundary depends only on
pH.

The boundary between predominance of
Fe3+ and Fe2+ is independent of the Fe con-
centration in solution, and is the same as
equ. 3.130 and Fig. 3.19, namely pε = 13.

Examining this diagram, we see that for
realistic dissolved Fe concentrations mag-
netite can be in equilibrium only with a
fairly reduced, neutral to alkaline solution.
At pH of about 7 or less, it dissolves and
would not be stable in equilibrium with
acidic waters unless the Fe concentration
were very high.  Hematite is stable over a
larger ranges of conditions, and becomes
stable over a wider range of pH as pε in-
creases.  Significant concentrations of the
Fe3+  ion (> 10-6 m) will be found only very
acidic, oxidizing environments.
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Figure 3.21.  pε and pH of various waters on and near the
surface of the earth.  After Garrels and Christ (1965).
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Figure 3.21 illustrates the pH and pε values
that characterize a variety of environments on
and near the surface of the Earth.  Comparing
this figure with pHÐpε diagrams allows us to
predict the species we might expect to find in
various environments.  For example, Fe3+ would
be a significant dissolved species only in the
acidic, oxidized waters that sometimes occur
in mine drainages (the acidity of these waters
results from high concentrations of sulfuric
acid that is produced by oxidation of sulfides).
We would expect to find magnetite
precipitating only from reduced seawater or in
organic-rich, highly saline waters.

Redox in Magmatic Systems

High temperature geochemists use oxygen
fugacity to characterize the oxidation state of
systems.  Thus, equilibrium between magnetite
and hematite might be written as:

4Fe3O4 + O2(g) ® 6Fe2O3 3.133
rather than the way we expressed it in equ.
3.130.  We note, however, there is negligible
molecular oxygen in magmatic systems, and
other species are often responsible for transfer
of electrons and O2Ð.  For example, the equilib-
rium between magnetite and hematite may be
mediated by water:

2Fe3O4 + H2O(g) ® 3Fe2O3 + H2 3.134
The above two reactions are thermodynami-
cally equivalent in terms of magnetite oxidation.  The first reaction is simpler, of course, and hence
preferred, but it may sometimes be necessary to consider the proportions of the actual gas species
present.

If we can regard magnetite and hematite as pure phases, then their activities are equal to one and
the equilibrium constant for reaction 3.133 is the inverse of the oxygen fugacity:

KMH  = 
1

ƒO2
 3.135

We can rewrite equ. 3.98 as:   K = e –∆Gf
o/RT 3.136

and taking the standard state as 1000 K and 1 bar, we can write:

 
- log K = log ƒO2

=
6∆Gf(Fe2O3,1000)

o – 4∆Gf(Fe3O4,1000)
o

2.303RT
Thus oxygen fugacity can be calculated directly from the difference in the free energy of formation of
magnetite and hematite at the appropriate T and P.  Substituting appropriate values into this equa-
tion yields a value for log ÄO2 of Ð10.86.

It is important to understand that the oxygen fugacity is fixed at this level (though the exact
level at which it is fixed is still disputed because of uncertainties in the thermodynamic data) sim-
ply by the equilibrium coexistence of magnetite and hematite.  The oxygen fugacity does not depend
on the proportion of these minerals.  For this reason, it is appropriately called a buffer.  To under-
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Figure 3.22. Oxygen buffer curves in the system Fe-
Si-O at 1 bar.  QIF, IW, WM, FMQ, and MH refer
to the quartz-iron-fayalite, iron-w�stite, w�site-
magnetite, fayalite-magnetite-quartz and magne-
tite-hematite buffers respectively.
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stand how this works, imagine some amount of magnetite, hematite and oxygen present in a magma.
If the oxygen fugacity is increased by the addition of oxygen to the system, equilibrium in the reaction
in equation 3.133 is driven to the right until the log of the oxygen fugacity returns to a value of -10.86.
Only when all magnetite is converted to hematite can the oxygen fugacity rise.  A drop in oxygen fu-
gacity would be buffered in exactly the opposite way until all hematite were gone.  A number of other
buffers can be constructed based on reactions such as:

3Fe2SiO4 + O2 ® 2Fe3O4 + 3SiO2

  (fayalite)                (magnetite) (quartz)
and   Fe + 1

2 O2(g) ® FeO
   (iron) (wüstite)     

These can be used to construct the oxygen buffer curves in Figure 3.22.
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Problems

1.  Consider the following minerals:
anhydrite: CaSO4

bassanite: CaSO4.1/2H2O   (the stuff of which plaster of paris is made)
gyspum: CaSO4.2H2O
a.)  If water vapor is the only phase of pure water in the system, how many phases are there in

this system and how many components are there?
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b.)  How many phases are present at invariant points in such a system?  How many univariant re-
actions are possible? Write all univariant reactions, labelling each according the the phase tha t
does not participate in the reaction.

2. Use the data in Table 2.2 to construct a temperature-pressure phase diagram that showing the sta-
bility fields of calcite and argonite.

3.   Consider the following hypothetical gaseous solution: gases 1 and 2 form an ideal binary solution;
at 1000¡K, the free energies of formation from the elements are -50kJ/mol for species 1 and -60kJ/mol
for species 2.

a.)  Calculate ÆGmixing for the solution at 0.1 increments of X2.  Plot your results.
b.)  Calculate G

Ð
  for ideal solution at 0.1 increments of X2.  Plot your results.

c.)  Using the method of intercepts, find µ1 and µ2 in the solution at X2 = 0.2

4.  Using the thermodynamic data in Table 2.2, determine which side of the reaction:
2Al(OH)3 ® Al2O3 + 3H2O

is stable at 600¡ C and 400 MPa.

5.  The following analysis of water is from the Rhine River as it leaves the Swiss Alps:
HCO 3

− 113.5 ppm SO 4
2− 36.0 ppm

Cl- 1.1 ppm NO 3
− 1.9 ppm

Ca2+ 40.7 ppm Mg2+ 7.2 ppm

Na+ 1.4 ppm K+ 1.2 ppm

a.  Calculate the ionic strength of this water. (Recall that concentrations in ppm are equal to con-
centrations in mmol kg-1 multiplied by formula weight.)

b.  Using the Debye-H�ckel equation and the data in Table 3.2, calculate the practical activity co-
efficients for each of these species at 25¡C.

6.  Seawater has the following composition:
Na+ 0.481 M Cl- 0.560 M

Mg2+ 0.0544 M SO 4
2− 0.0283 M

Ca2+ 0.0105 M HCO 3
− 0.00238 M

K+ 0.0105 M
a.   Calculate the ionic strength.
b. Using the Davies equation and the data in Table 3.2, calculate the practical activity coeffi-

cients for each of these species at 25¡C.

7.  Water from Thonon, France has the following composition:
Anions mg/L Cations mg/L
HCO 3

– 332 Ca2+ 103.2
SO 4

2− 14 Mg2+ 16.1
NO 3

– 14 K+ 1.4
ClÐ 8.2 Na+ 5.1

a. What is the ionic strength of this water?
b.  What are the activity coefficients for HCO 3

– and CO 3
2− in this water?

c.  Assuming an equilibrium constant for the dissociation of bicarbonate:
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HCO 3
− ® H+ + CO 3

2−

of 4.68 × 10Ð11 and a pH of 7.3, what is the equilibrium concentration of CO2-
3   in this water?

8. Given the following analysis of biotite and assuming a mixing-on-site model for all sites, calculate
the activities of the following components:

a . ) KMg3Si3AlO10OH2  (phlogopite)
b.) KFe 3

2+ Si3AlO10(OH)2  (annite)

Site                           Ion                  Ions per site

Tetrahedral S i 2.773
A l 1.228

Octahedral A l 0.414
Ti 0.136

Fe+3 0.085
Fe+2 1.390
Mn 0.009
Mg 0.850

Interlayer Ca 0.013
N a 0.063
K 0.894

Anion OH 1.687
F 0.037

Hint: Check your result by making sure the activity of phlogopite in pure phlogopite is 1.

9.  Write the equilibrium constant expression for the reaction:
CaCO H SO H O CaSO H O COs aq liq g3 4

2
2 4 2 22 2( ) ( ) ( ) ( )+ + + ⇔ ⋅ ++ −

assuming the solids are pure crystalline phases and that the gas is ideal.

10.  The equilibrium constant for the dissolution of galena:
PbSsolid + 2H+ ® Pb aq

2++ H2S
aq

is 9.12 × 10-7 at 80¡ C.  Using the γPb2+ = 0.11 and γH2S = 1.77, calculate the equilibrium concentration of
Pb2+ in aqueous solution at this temperature and at pHÕs of 6, 5 and 4.  Assume the dissolution of galena
is the only source of Pb and H2S in the solution and that there is no significant dissociation of H2S.
Hint:  mass balance requires that [H2S] = [Pb2+].

11.  The first and second dissociation constants for phosporic acid (H3PO4) are:
  

K 1 =
H + H 2PO4

–

H 3PO4
= 7.52 ×10 –3

  
K 2 =

HPO4
2– H +

H 2PO4
– = 6.23 ×10 –8

Assuming ideal behavior (γ = 1), a pH of 3.5, and a third dissociation constant is 0.  If you added 1
mole of phosphoric acid to 1 liter water, what will the concentration of H2PO 4

– be?

12.  Assuming ideal solution behavior for the following:
a.) Show that the boiling point of a substance is increased when another substance is dissolved in it

assuming the concentration of the solvent in the vapor is small.
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b.) By how much will the boiling point of water be elevated when 10% salt is dissolved in it?

13. Find ÆG
Ð

  for the reaction:
Pb2+ + Mn ® Pb + Mn2+

Which side of the reaction is favored?  (HINT: use the data in Table 3.3)

14.  What is the ÆG
Ð

   for the reaction:
Cu2+ + e– ® Cu+

What is the pε¡ for this reaction?

15.  Consider a stream with a pH of 6.7 and a total dissolved Fe concentration of 1 mg/L.  Assume ideal
behavior for this problem.

a.  If the stream water is in equilibrium with the atmospheric O2 (partial pressure  of 0.2), what is
the pε of the water?

b.  Assuming they are the only species of Fe in the water, what are the concentrations of Fe3+ and
Fe3+ .  Use the pε you determined in part a.

16.  Construct a pεÐpH diagram for the following species of sulphur: HSO 4
– , SO 4

2− , H
2
S, HS-, and S2-

at 25¡C and 1 bar.  The following free energies of formation should provide sufficient information to
complete this task.  

species ÆG
o
f  species ÆG

o
f  

S2-  (aq) +20.51 H2O -56.69
HS-  (aq) +2.89 H+ 0
H2S  (aq) -6.65 H2 (g) 0
SO2-

4   (aq) -177.95 O2 (g) 0
HSO 4

− (aq) -180.67
Values are in kcal/mole, standard state is 25¡C and 1 bar.  R = 1.987 cal/mole-K.

17.  Construct a pεÐpH diagram for dissolve species of uranium: UO 2
2+ and U(OH) 5

− , and the two solid
phases UO2 and U3O8

 at 25¡C and 1 bar.   Assume the activity of dissolved uranium is fixed at 10-6. The
following free energies of formation should provide sufficient information to complete this task.  

species ÆG
o
f  

U(OH) 5
− (aq) Ð389.77

UO 2
2+  (aq) -227.66

UO2 (s) -246.62

U3O8 (s) -805.35

H2O -56.69
Values are in kcal/mole, standard state is 25¡C and 1 bar.  R = 1.987 cal/mole-K.


